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Abstract
Diabetic Retinopathy (DR) grading into different stages of severity continues to remain a
challenging issue due to the complexities of the disease. Diabetic Retinopathy grading
classifies retinal images to five levels of severity ranging from 0 to 5, which represents No
DR, Mild non‐proliferative diabetic retinopathy (NPDR), Moderate NPDR, Severe
NPDR, and proliferative diabetic retinopathy. With the advancement of Deep Learning,
studies on the application of the Convolutional Neural Network (CNN) in DR grading
have been on the rise. High accuracy and sensitivity are the desired outcome of these
studies. This paper reviewed recently published studies that employed CNN for DR
grading to 5 levels of severity. Various approaches are applied in classifying retinal images
which are, (i) by training CNN models to learn the features for each grade and (ii) by
detecting and segmenting lesions using information about their location such as micro-
aneurysms, exudates, and haemorrhages. Public and private datasets have been utilised by
researchers in classifying retinal images for DR. The performance of the CNN models
was measured by accuracy, specificity, sensitivity, and area under the curve. The CNN
models and their performance varies for every study. More research into the CNN model
is necessary for future work to improve model performance in DR grading. The Inception
model can be used as a starting point for subsequent research. It will also be necessary to
investigate the attributes that the model uses for grading.

1 | INTRODUCTION

Diabetic Retinopathy (DR) screenings require ophthalmolo-
gists to evaluate the retinal fundus images and it has become
more difficult to offer expert eye care to everyone as the
diabetes population grows. However, screening of DR has to
be carried out routinely for diabetic patients, which places a
huge responsibility on the experts as the growing number of
diabetic patients affects their efficiency and causes delays in

DR diagnosis and treatments. The increasing gap has initiated
the demand for automated DR screening systems and ar-
rangements. With the advancement of technology, automated
grading is a solution for DR screening that offers several ad-
vantages including increasing efficiency, reproducibility, and
scalability, as efficient evaluations of retinal images are needed
to support the already substantial manual laborious time‐
consuming screening work, which can be error‐prone. There-
fore, there is a need for an automated DR grading system to
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analyse the pattern and characteristics of different DR severity
levels that have no subconscious biases nor subjectivity [1].

Researchers have applied different methods to solve
diabetes‐related problems ranging from detection, classifica-
tion, and prediction. Throughout the years, more techniques are
being developed to automate DR diagnosis [2] such as decision
tree, random forest [3, 4] and feature selection [5]. Decision tree
and random forest are examples of machine learning techniques
that have been widely used in medical diagnosis of Diabetes.
Feature selection algorithm is applied for better selection of
classifiers to enhance diagnostic accuracy. Published studies on
classification for DR detection and grading of its severity level
have obtained significant results that may be beneficial in
clinical settings in the future. The benefits of automated grading
of the DR severity level include enhancing screening pro-
gramme efficiency and coverage, reducing barriers to access,
and improving patient outcomes through early timely detection
and treatment [6]. The performance of Deep Learning (DL)
algorithms for DR‐related problems has been good; however, it
is not adequate for optimum and practical clinical deployment
due to image‐related factors. For example, different image
compression and fundus field of view will make a significant
impact on the DL model performance [7]. Each step taken
before the training process of the model is important; thus, the
review will also summarise varieties of methods taken before
the classification process. The classification model used in every
research differs as their model performance results suggested.
The differences in each model will be discussed. The review will
be focussing mainly on the various methods used in DR
detection and grading, including published work that employed
the Convolutional Neural Network (CNN) for DR grading
based on the 5 severity levels [8].

The paper is organised into several sections. Section 2 gives
an overview of DR and the background of DL for DR analysis.
Section 3 describes the different methods based on DL that
have been applied in DR detection and grading. Section 4 details
the published studies on the application of CNN in DR grading
to five severity levels which includes the datasets used, the CNN
models applied, and the performance measures for each model.
Section 5 presents the challenges faced in applying the models
for DR grading. Finally, Section 6 concludes the review studies.

The main contribution of this study is the comparative
analysis of different CNN models for DR screening specifically
for DR grading. This paper summarised published studies that
focussed on DR grading from 2017 to 2022. The studies
employed different databases; several CNN models with their
performance measured are discussed. Based on the review, the
challenges encountered by researchers that utilised CNNmodels
for DR grading were discovered. The challenges highlighted will
expose the potential future work in this research area.

2 | BACKGROUND STUDY

Diabetic Retinopathy is a common ocular complication of
diabetes that involves retinal abnormalities, which remain a
leading cause of visual loss in working‐age populations.

Physiologically, the retina is a light‐sensitive layer, which con-
sists of four main sub‐layers, firstly the outer neural layer,
containing nerve cells and blood vessels, secondly the photo-
receptor layer, a single layer that contains the light‐sensing rods
and cones, thirdly the pigmented retinal epithelium (PRE) and
finally the choroid, consisting of connective tissue and capil-
laries. The retina is finely insulated from the bloodstream by a
barrier known as the blood‐retinal barrier (BRB). The outer
part of BRB is located at the PRE, which serves to regulate
movements of nutrients and solutes through the retinal sub‐
layers. The inner BRB is formed by vascular endothelial of
the inner retina and tight junction. Retinal vasculature has a
high metabolic demand thus making it susceptible to damage
due to oxidative stress, which occurs in pathologic conditions
such as chronic diabetes. Diabetic Retinopathy has been
recognized as a microvascular disease where retinal abnormal-
ities such as vascular changes, haemorrhages, and fluid extrav-
asation eventually lead to one's vision distortion and reduction
[9]. Thus, regular screening and early detection are necessary to
prevent DR from worsening before getting treatment.

Clinically, DR is divided into two stages; (i) the early stage
of DR is represented by non‐proliferative diabetic retinopathy
(NPDR), and (ii) the advanced stage of DR is represented by
proliferative diabetic retinopathy (PDR) [10]. During the
NPDR stage, the main observations in the retinal vasculature
focussed on the increased vascular permeability and capillary
occlusion wherein microaneurysms, haemorrhages, and hard
exudates can be detected by fundus photography although the
patients may be asymptotic [10]. Non‐proliferative diabetic
retinopathy is divided into mild, moderate, and severe. While
PDR is defined as neovascularisation or new vessels which are
abnormal, which can be classified as new vessels on the optic
disc or new vessels elsewhere n, especially in tissues where
circulation has been impaired by trauma or disease. Based on
Table 1, the progression of DR is classified into 5 stages (No
DR, Mild NPDR, Moderate NPDR, Severe NPDR, and PDR).
The different features in each stage allow the CNN supervised
network of DL to be applied for DR classification. Figure 1
shows example of images that represents the 5 severity levels.

Medical diagnosis has gone beyond the manual diagnostics
process as time transcends. As computer‐aided diagnosis
(CAD) become one of the major research subjects in medical
imaging, more CAD schemes for various diseases have been
developed. Researchers have been combining the idea of CAD,
artificial intelligence (AI), and DL for DR in hope of assisting
ophthalmologists in grading retinal images.

The rapid growth of AI allows DL, which is a field within
AI, to be widely applied in medical imaging analysis. Deep
Learning is commonly used for tasks such as detection and
classification gave the input data as either labelled or unlabelled
data. It compiles trained multi‐layer networks of artificial
neurons which can automatically identify valuable features such
as lines, edges, and shapes [11]. For example, in retinal images,
when a retinal vessel is branching out to form abnormal new
vessels, it signifies an abnormality in the image. Thus, an
analysis of the image is needed to conclude the patient's disease
changes affecting the retina. A DL algorithm will analyse the
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image and classify the image to a related disease category. A
Deep Learning classification model that has been widely
applied in medical imaging is the CNN.

The Convolutional Neural Network is a supervised
network in DL that is typically used when dealing with image
data. The Convolutional Neural Network has become a

dominant architecture in medical image analysis published
work due to the availability of huge labelled datasets and
advancement of Graphical Processing Units (GPUs) leading to
a significant improvement of CNN performance [12]. It
comprises three types of layers which are convolutional,
pooling layers, and fully connected layers. Some of the popular

TABLE 1 International clinical DR
disease severity scale (ICDRDSS) adapted
from Ref. [8]

Diabetic retinopathy Findings observable on dilated ophthalmoscopy

No apparent DR No abnormalities

Mild NPDR Microaneurysms only

Moderate NPDR More than just aneurysms, but less than severe NPDR

Severe NPDR Any of the following

Intraretinal haemorrhages (20 in each quadrant)

Definite venous beading (in two quadrants)

Intraretinal microvascular abnormalities (in 1 quadrant)

No signs of proliferative retinopathy

PDR Severe NPDR and one or more of the following

Neovascularisation

Vitreous/preretinal haemorrhage

F I GURE 1 Example of images that represents the severity levels and the presence of microaneurysm, haemorrhage and exudate in a severe non‐
proliferative diabetic retinopathy (NPDR) fundus image
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CNN architectures are AlexNet [13], VGGNet [14], Goo-
gLeNet [15], or commonly known as Inception and ResNet
[16] architecture.

In CNN for DR classification, various studies have been
done with different approaches from classifying retinal images
based on their severity levels to classifying images based on the
extracted features. More details will be highlighted in Section 3.

Accurate results in classifying medical images are important
in an automated system to aid clinical care and treatment. The
Convolutional Neural Network is an end‐to‐end solution for
image classification; therefore, the model will learn the features
of each class and be able to differentiate the characteristics
required for each class. The strength of CNN is that the error‐
detected abnormalities will be propagated back to enhance the
feature extraction component, resulting in improved repre-
sentation [17]. It has been widely used in medical diagnosis or
classification systems because the CNN is a good feature
extractor, in which the network can be used to categorize
medical images. It is also an economical option to save time and
money on feature engineering [18], which is a process of
selecting and transforming features from raw data into a form
that is easier to interpret when building a predictive model.

3 | DIABETIC RETINOPATHY
DETECTION AND GRADING

There have been various approaches in detecting and grading
DR severity using DL which can be categorised into two cat-
egories where the first category is by training the classification
model to distinguish DR grades and the second category is by
using information obtained from the extracted features of le-
sions which are microaneurysms, exudates, and haemorrhages
[19]. Diabetic Retinopathy detection determined whether the
retinal image is normal, or the image is abnormal. On the other
hand, DR grading classifies the image to the different levels of
severity of the DR.

To classify DR grades directly, the classification model is
trained to differentiate the features for each level of severity.
Grading of DR is performed based on its severity level by
referring to Table 1 which has been used by ophthalmologists
to grade a fundus image for DR. The interpretation of the table
is based on the expert in which there might be variations in
opinions for each level resulting in a need of a third opinion.
Diabetic Retinopathy grading to 5 levels applied by ([1, 20–42])
will be discussed further in Section 4.

However, there are occasions when researchers classify
differently as they combined some levels. Some studies are more
focussed on detecting the presence of DR where they classify
images to 0 or 1 which refers to no DR or DR of any severity
level [43] as they merged data from class (1,2,3,4) and defined
them as 1. Gulshan et al. [6] focussed on training algorithms to
detect referable DR which is defined as moderate and worse
DR. Shankar et al. [44], Zhang et al. [45] and Hemanth et al. [46]
classified the retinal images into 4 classes. However, the levels
used in both studies differ from each other. Zhang et al. [45]
used 4 severity levels of DR; No DR; NPDR; NPDR2PDR; and

PDR while Hemanth et al. [46] classified the images into
normal; macular oedema; PDR; and NPDR.

Diabetic Retinopathy detection can also be performed by
detecting and segmenting lesions using information about their
location such as microaneurysms, exudates, and haemorrhages
as shown in Figure 1. The network is trained to learn the
features of microaneurysms, exudates, and haemorrhages.
Khojasteh et al. [47] classified the images into three stages by
detecting the presence of exudates, microaneurysms, and
haemorrhages whereas Eftekhari et al. [48] take advantage of
CNN to increase the accuracy of microaneurysms detection
whereby CNN works as the main classifier to extract the po-
tential microaneurysm regions. On the other hand, Mateen
et al. [49] detected exudates from DR by performing transfer
learning on Inception V3, ResNet‐50, and VGG‐19 architec-
tures. The collective information obtained on the lesions can
be used in the future for DR classification.

Both DR detection and grading are important in a way in
which both provide information of a patient suffering from
diabetic retinal disease. Although no cure for DR has been
developed, some treatments can be applied to prevent further
damage in the eye. The doctor will determine the best possible
treatment according to DR severity stages. Therefore, knowing
the grade of DR for a patient will help the patient with the
disease and be more aware in monitoring for any changes in
the body due to diabetes.

4 | EXISTING WORKS

The general process of a CNN model in classifying fundus
images to 5 severity levels are explained in Figure 2. Retinal
images are split into training and testing images. Then, the im-
ages are fed into the CNN model where images are resized ac-
cording to the input image layer of the CNN. A CNN model
consists of convolution layer, pooling layer and fully‐connected
layer. There is no specific quantity for howmany of each type of
layer are needed in a model and fundus image will be graded
accordingly. Thus, the existing works that we focussed on are the
usage of DL in DR grading to 5 stages which are No DR, Mild
NPDR, Moderate NPDR, Severe NPDR, and PDR. A total of
20 papers that utilised CNN forDR grading have been reviewed.
Table 2 displays the summary of studies that applies the CNN
for DR grading as mentioned in Table 1 [8]. In Table 2, infor-
mation regarding the dataset used, the number of images used;
train‐test split; model or architecture used, and their perfor-
mance measures (area under the curve (AUC), accuracy, speci-
ficity, and sensitivity) were presented. The subsections will
discuss in more detail the dataset, CNN architecture employed,
and performance results achieved.

4.1 | Datasets

In this section, we will analyse the datasets, the number of
retinal images used, and the train‐test split employed by the
researchers. Public and private datasets have been utilised in
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DR grading to 5 severity levels. Public datasets that provide
pre‐collected retinal images for research purposes can be ob-
tained from Kaggle, EyePACS [50], Messidor [51], Messidor‐2
[52], DIARETDB1 [53], and Asia Pacific Tele‐Ophthalmology
Society (APTOS) 2019 dataset.

Based on Table 1, Ref. [1, 20, 21, 23–26, 31, 32, 35, 39, 40]
used the EyePACS dataset which contain 35,126 images which
can be obtained from Kaggle repositories. However, Ref.
[27, 28, 38], and Ref. [41] employed EyePACS datasets that
contain 71,913, 37,000, 88,702 and 75,000 images. The Eye-
PACS dataset has been graded to its severity stages labelled
from zero to 4. Bhardwaj [29] used the Messidor dataset with
396 images. On the other hand, Reguant, Brunak, and Saha [1]
utilised DIARETDB1 for their studies which has 89 images
representing the five levels of DR grading. Messidor‐2 was
adopted by Ref. [32, 34, 36, 38] which is an extension of
Messidor as an additional dataset with 1746 and 800 images,
respectively. Ref. [35, 37, 42] utilised the APTOS 2019 dataset
with 3662 images, which were used for Kaggle 2019 DR
detection competition.

Ref. [22, 36], and Ref. [28] employed datasets obtained
from different hospitals and institutions with 8816, 13,767, and
40,000, respectively. While Dai et al. [27] implemented three
private datasets, Shanghai Integration model (SIM), China
National Diabetic Compilations Study, and Nicheng Diabetes
Screening Project (NDSP), for training and validation which
contain 666383, 92672, and 27948 respectively.

The authors of Ref. [36, 39] split the dataset at the ratio of
90:10 for training and validation, respectively. The authors of
Ref. [24, 27] split the data with the ratio of 80:20 while those
of Ref. [29] divided the dataset in the ratio of 70:30. The au-
thors of Ref. [1, 41] divided the dataset into training, validation,
and testing with the ratio of 80:10:10 and 94:3:3, respectively.

In an automated system, it is important to remember that
bias and prejudice must be avoided. For example, people
receiving healthcare varies by race; thus, racial bias should be
considered. There is biological variability that may exist for

different races. A study by Li et al [54] proves that there are
significant differences in several retinal parameters among
Malays, Chinese, and Indians. Experiments suggest that there is
a potential for bias that exists between lighter‐skin and darker‐
skin due to average fundus pigmentation, optic disc size, and
retinal arteriolar calibre [55]. The database size used varies;
however, most studies operate on a relatively large dataset with
more than 30,000 images. The dataset is obtained from various
sources, but mostly from public sources such as Kaggle and
EyePACS as they provide a large number of labelled retinal
images. Before training, the ratio between training data and
validation should be determined. Using a huge training dataset
can provide a good result; a good ratio between the training
and validation dataset is important as a good result can be
obtained by having the best ratio. Although some studies did
not mention the ratio that they apply in their studies, using the
ratio of 90:10 can produce good results too. Ref. [36, 39] used
this ratio and achieved high accuracy for their work. Therefore,
with a small dataset, having the largest possible percentage of
the training dataset than the validation dataset is better.

Other than that, image pre‐processing is considered
necessary in DL to standardise the image variation in the
dataset. Some studies apply different methods to pre‐process
their images to enhance the quality of images. Qummar et al.
[20] apply image resizing, image cropping, mean normalised
image, and rotated image to their input dataset. Wan et al. [31]
utilised non‐local means denoising developed by Buades et al.
[56] to remove noise. Studies also applied data augmentation to
their dataset to increase the number of images. Data
augmentation is a way of increasing the data while retaining the
features in the image by performing image modifications
across a sample dataset [43]. By performing data augmentation,
we can increase the number of images used. To train the
network for DR classification, images are enhanced to deter-
mine features for each class. Wan et al. [31] also suggest
cropped images to eliminate unnecessary areas. Nneji et al. [34]
applies contrast‐limited adaptive histogram equalisation

F I GURE 2 Deep Learning (DL) process in classifying images to 5 severity levels
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(CLAHE) and contrast‐enhanced canny edge detection
(CECED) to the fundus images. Contrast‐limited adaptive
histogram equalisation pre‐processing was applied to enhance
the contrast and features of a fundus image by making the
anomalies more apparent while CECED enhances the edges of
vessels in fundus image to reveal detailed information and
characteristics [34].

4.2 | Convolutional Neural Networks
architecture models

The studies mentioned either perform transfer learning or
customised their own CNN for DR grading. The authors of
Ref. [21, 23, 26, 28], and [30] customised their own network.
The authors of Ref. [20, 22] employ ensemble learning where
multiple CNN models is combined to solve DR grading. The
authors of Ref. [1, 24, 25, 27, 31, 36–42], and [29] perform
transfer learning on several pre‐trained networks. Pre‐trained
CNN architectures applied for DR grading in the reviewed
studies are AlexNet [13], VGGNet [14], GoogLeNet [15],
Inception [57], ResNet [16], Xception [58] and DenseNet [59]
architectures. This section discusses on the application of
different CNN models in their works. Table 3 represents CNN
model architecture used and its features.

Customised CNN designed by authors of Ref. [21, 23, 26,
28], and [30] have different characteristics. Raju et al. [21] use
an input size of 448 � 448 with the filter size of 3 � 3 and
4 � 4. The model is composed of 12 convolutional layers, five
pooling layers, and three fully connected layers. Ghosh et al.
[23] build a model with an input size of 512 � 512. The
network uses 13 convolutional layers, five max‐pooling layers,
three dropout layers with a mixture of 2 � 2, 3 � 3, and 7 � 7
filters. Lin et al. [26] use 4 convolutional layers with a kernel
size of 5 � 5. Ayoub et al. [30] proposed 2 networks CNN299
and CNN512. CNN299 uses an input of 299 � 299 and has 4
convolutional layers and 4 max‐pooling layers. CNN512 uses
an input size of 512 � 512 and has six convolutional layers and
six max‐pooling layers. The networks differ in various ways
such as the number of layers and filter size. One advantage of a
custom network is its larger input size. In most datasets, the
original size of images is rather large leading to resizing the
images according to the input layer size. Due to the size of
lesions, it may be difficult for the network to learn the feature
of the tiny lesions.

Qummar et al. [20] and Zhang et al. [22] proposed an
ensemble learning of various networks. Ensemble learning
combines several bases of different networks to produce an
optimum predictive model. Qummar et al. [20] ensembled
ResNet50, Inception‐V3, Xception, Dense121and Dense169
for their studies. On the other hand, Zhang et al. [22] proposed
an ensemble of Inception‐V3, ResNet50, Xception, Inception
ResNetV2, and DenseNets by fine‐tuning them before
combining these networks.

Transfer learning is applied by Ref. [1, 24, 25, 27, 29, 31,
36–42] for DR grading. The authors of Ref. [1, 25, 31, 42], and
[29] perform transfer learning on multiple networks and

compare the performance of each model. Dai et al. [27] per-
forms transfer learning and create DeepDR by combining
three sub‐networks that serve different purposes. DeepDR is
built for lesion detection, lesion segmentation, and DR grading.
Dai et al. [27] did not specify which networks were used but
mentioned that pre‐trained weights were fixed during the
process. However, the rest of the work mentioned which
networks were employed to give insights into how well each
model performed.

Authors of Ref. [25, 29, 31, 33, 42] employ AlexNet in their
works. AlexNet consists of 5 convolutional layers, three
pooling layers, and 3 fully connected layers. Due to the lesser
depth of the model, the model faced difficulty to learn the
features for each class which can be seen in the accuracy stated
in Section 4.3. As it is one of the earliest CNN architecture,
studies have been amending the model to improve its
performance.

Next, authors of Ref. [23, 29, 33, 37, 41 42] implement
different VGG networks in their studies. VGGNet added more
layers to AlexNet and used only 3 � 3 kernels to increase the
model performance. Ref. [25, 29, 31, 34, 37, 41], and Ref. [42]
used VGGNet‐16 or known as VGG‐D [14] which comprises
of 13 convolutional layers and 3 fully connected layers. Ref.
[29, 31], and Ref. [42] utilised VGGNet‐19 or denoted as
VGG‐E [14]that consists of 16 convolutional layers and 3 fully
connected layers. The smaller filter size makes better prediction
for a smaller size of lesions in the images. The downside of a
VGG network is its large size causing higher computation time.

Besides, the authors of Ref. [1, 20, 22, 32], and Ref. [42]
employ ResNet in their work with the authors of Ref. [1, 20,
22, 32] specifically mentioning the usage of ResNet50 and
those of Ref. [42], the usage of ResNet18. ResNet18 is
composed of five convolutional layers, one average pooling
layer, and a fully connected layer with a softmax layer. How-
ever, ResNet50 is a deeper network than ResNet18 with 49
convolutional layers and a fully connected layer at the end of
the network.

Ref. [1, 24, 25, 29, 31, 33, 34, 36, 40, 42] employ different
version of Inception architecture. Ref. [1, 29, 31, 33, 42] uti-
lised GoogLeNet, or known as Inception presented by Szegedy
et al. [15], who introduced the Inception module that allows
multiple types of filter size to be used in a single image block
[15]. GoogLeNet contains nine inception modules with 4
convolutional layers, 4 max‐pooling layers, 3 average pooling
layers, 5 fully connected layers, and 3 softmax layers. The
network uses an average pooling layer with 1 � 1, 3 � 3 and
5 � 5 filter sizes and stride 3. The authors of Ref. [24, 25, 29,
34, 36] implement Inception V3 while those of Ref. [33, 40]
used Inception V4. Inception V3 factorises 5 � 5 convolution
to two 3 � 3 convolutions to improve computational speed.
Szegedy et al. [57] incorporate Inception V2 features and
factorise 7 � 7 convolutions. They also apply Batch Normal-
isation in the auxiliary classifiers and label smoothing to pre-
vent overfitting. Inception V4 introduces reduction blocks to
change the width and height of the grid [60].

On the other hand, Reguant et al. [1] apply Inception
ResNet while Hu et al. [39] and Tariq et al. [33] use Inception

TAJUDIN ET AL. - 9



TABLE 3 CNN model architecture

Ref Method Model Input size Filter size Features

[21] Custom ‐ 448 � 448 3 � 3
and 4 � 4

12 convolutional layers, 5 pooling layers, 3
fully connected layers

[23] Custom ‐ 512 � 512 2 � 2, 3
� 3 7 � 7

13 convolutional layers, 5 max‐pooling layers,
3 dropout layers

[26] Custom ‐ ‐ 5 � 5 4 convolutional layers

[28] Custom ‐ 300 � 300 3 � 3 Attention fusion network

[30] Custom CNN299 299 � 299 ‐ 4 convolutional layers, 4 max‐pooling layers

[30] Custom CNN512 512 � 512 ‐ 6 convolutional layers, 6 max‐pooling layers

[20] Ensemble learning ResNet50,
Inception‐V3,
Xception,
Dense121,
Dense169

‐ ‐ ‐

[22] Ensemble learning ‐ ‐ ‐ ‐

[25, 29, 31,
33, 42]

Transfer learning AlexNet 224 � 224 11 � 11,
5 � 5
and 3 � 3

5 convolutional layers, 3 pooling layers, 3
fully connected layers

[25, 29, 31,
33, 37,
41, 42]

Transfer learning VGGNet‐16 224 � 224 3 � 3
and 2 � 2

13 convolutional layers, 3 fully connected
layer

[29, 31, 42] Transfer learning VGGNet‐19 224 � 224 3 � 3
and 2 � 2

16 convolutional layers, 3 fully connected
layer

[42] Transfer learning ResNet‐18 224 � 224 3 � 3 5 convolutional layers, 1 average pooling
layer, 1 fully connected

[1, 20,
22, 32]

Transfer learning ResNet50 224 � 224 3 � 3 49 convolutional layers, 1 fully connected
layer

[1, 29, 31,
33, 42]

Transfer learning GoogLeNet 299 � 299 ‐ 9 inception modules with 4 convolutional
layers, 4 max‐pooling layers, 3 average
pooling layers, 5 fully connected layers,
and 3 softmax layers

[57] Transfer learning Inception V2 299 � 299 ‐ Factorise 5�5 convolution to two 3�3
convolution

[24, 25, 29,
34, 36]

Transfer learning Inception V3 299 � 299 ‐ Factorised 7�7 convolutions, batch
normalisation in the auxiliary classifiers,
and label smoothing

[33, 40] Transfer learning Inception V4 299 � 299 ‐ Introduces reduction blocks to change the
width and height of the grid

[1] Transfer learning Inception ResNet 299 � 299 ‐ Inception module but incorporates residual
connections of ResNet, differs in terms
of hyper‐parameter settings

[33, 39] Transfer learning Inception
ResNet V2

299 � 299 ‐ Computational cost similar to inception v4

[1, 20, 22] Transfer learning Xception 299 � 299 ‐ Depthwise separable convolutions

[20] Transfer learning Dense121
and
Dense169

224 � 224 ‐ ‐

[22, 35, 38] Transfer learning DenseNets 224 � 224 ‐ ‐

[30] Transfer learning EfficientNetB0 ‐ ‐ The top 2 layers are replaced with the global
average pooling (GAP) layer, 2 fully
connected layers, and the SoftMax layer.

10 - TAJUDIN ET AL.



ResNet V2, where the model implements the idea of the
Inception module but incorporates residual connections of
ResNet. The differences between these two are the hyper‐
parameter settings and their computational cost. V1 is similar
to Inception V3 for its computational cost while V2 is similar
to Inception V4.

Additionally, Ref. [1, 20], and Ref. [22] employ the
Xception. Xception uses Depthwise Separable Convolutions
in their network which is said to be more efficient in
computational time. [20, 22, 38], and [35] also apply Dense-
Net. The authors of Ref. [20] use Dense121 and Dense169 in
their studies. Ref. [35, 38], and [22] use DenseNets. Ref. [30]
also used transfer learning using EfficientNetB0 where the
top two layers were removed and replaced with Global
Average Pooling layer, 2 fully connected layers, and SoftMax
layer.

The concept behind each model implemented differs as
mentioned before; however, the goal is the same which is to
achieve high accuracy in performance. Nine studies utilise
the different version of Inception architectures, 6 studies use
the VGG network, 5 studies employ ResNet architecture,
and 2 studies use Inception Resnet, Xception, and DenseNet.
Five studies built their own CNN structures. Those with
relatively huge datasets such as Ref. [27] opted for custom
CNN for DR grading. 12 studies use transfer learning
because it reduces training time and requires fewer data to
train on to increase performance compared to building their
model from scratch. The existing CNN architectures used in
the studies vary from one another which influences different
model performance accuracy. Overall, the results obtained
are similar. Convolutional Neural Network architecture such
as VGGNet, AlexNet, and ResNet18 is considered as a small
network; thus, they compute with a lesser time compared to
other models. A more complex network includes Inception
architecture, DenseNet, and Xception. These models
require a longer computational time due to their complexity.
From the studies, it can be deduced that certain
models perform better. A more complex model such as
Inception does perform better than a simple model such as
AlexNet.

However, with tuning AlexNet can perform better as
proven by Wan et al. [31]. Hyperparameter tuning is deter-
mining a set of optimal hyperparameters for a learning algo-
rithm. The hyperparameter tuning technique helps to carefully
select the parameter values and leads to better classification
performance. Deep Learning common parameters are opti-
mization function, learning rate, mini‐batch size and number
of epochs.

There are several optimization functions that can be apply
before the training process begins. Some of the more
commonly used are stochastic gradient descent which is
applied by Ref. [5, 34], Adaptive Moment Estimation Algo-
rithm (ADAM) [33] and RMSprop [22]. Shankar [44]
mentioned that the Bayesian optimization model can be used
to tune a model as it analyses the previous validation outcome
in which it utilises to create a probabilistic model, which will
map the hyperparameters to a probability score.

Learning rate is a hyperparameter that control changes in
the model in response to the estimated error each time model
weights are updated. Qummar et al. [20] uses an initial learning
rate 0.01, then, it is decreased by a factor of 0.1 � 10−5. Zhang
et al. [22] mentions in their work that they used a learning rate
of 2 � 10−4 while Tariq et al. [33] applies a learning rate of
1 � 10−5. A learning rate that is too large can cause the model
to converge too quickly, whereas a small learning rate can cause
the training process to get stuck.

Mini‐batch size are tuned according to where the training
will be executed. It is dependent on the memory requirements
of the GPU or Central Processing Unit hardware. It is usually
determined by the power of 2, for example, 32, 64, 128 and so
on. Zhang et al. [22] and Tariq et al. [33] use a batch size of 32.
Small values led to a learning process that will converge quickly
with the presence of noise in the training process. On the other
hand, large values cause the process to converge slowly with
accurate estimation of the error gradient. Thus, it is recom-
mended to use the largest possible value for mini‐batch size for
a given a computational architecture during training to achieve
the best training stability and generalisation performance.

An epoch is one cycle through the entire training dataset
which decides the number of times the weights in the network
is to be updated. The model used 50 epochs for training with
early stopping if the model starts over‐fitting [22]. However, it
is noted that there is no fixed number of epochs that will
improve the model performance. A smaller learning rate may
require more training epochs as during each update, small
changes are made to the weights. On the other hand, larger
learning rates result in rapid changes and require fewer training
epochs.

Hyperparameter tuning can improve the model's perfor-
mance if the model is trained with optimised parameters. The
hyperparameter tuning technique comes with experience as
there is no right answer to which hyperparameters should be
tuned and its optimum values. Overall, all the models trained
have been demonstrated by achieving good results.

4.3 | Performance evaluation measurement

Performance evaluation uses measurement and analysis to
answer specific questions on how well a programme is
achieving its outcomes. Different metrics evaluate different
characteristics of the classifier induced by the classification
algorithm. A confusion matrix is a correlation between the
predictions of a model and the actual class labels of data points.
True positive and True negative are defined as positive and
negative instances that are correctly classified. False‐positive
(FP) and False Negative are the number of misclassified
negative and positive instances, respectively. Accuracy mea-
sures the ability of the model in identifying all samples [61].
Sensitivity is the frequency of correctly predicted positive
samples among all real positive samples while specificity
measures the ability of a predictor in identifying negative
samples [61]. In this section, the AUC, accuracy, specificity, and
sensitivity are analysed. Considering this as a medical diagnosis,
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a high‐performing model is needed, thus, the importance of
AUC, high accuracy, specificity, and sensitivity.

For custom‐built CNN in Ref. [21, 23, 26, 27], and [28], the
overall achieved AUC, accuracy, specificity and sensitivity
achieved are higher than 0.920, 85%, 82.04% and 73.24%,
respectively. The highest AUC score, specificity, and sensitivity
are 0.97, 97.1%, and 88.6%, respectively, achieved by authors
of Ref. [30] with their CNN512 network. Lin et al. [28] achieve
the highest accuracy with 87.30%. Dai et al. [27] tested their
network against various datasets and the best AUC and spec-
ificity achieved are 0.955% and 85.12% which is tested against
SIM. When tested against NDSP, the highest sensitivity of
94.40% is achieved.

Ensemble learning was done by authors of Ref. [20, 22] in
which Ref. [22] achieved the best accuracy, specificity, and
sensitivity of 95.46%, 97.99%, and 98.11% while Ref. [20]
achieved AUC of 0.97. By using AlexNet, Ref. [42] achieved
the highest accuracy of 97.90% while Ref. [31] also achieved a
specificity of 94.07% and sensitivity of 81.27%. The lowest
accuracy achieved by Ref. [25] is 37.43%.

Ref. [21, 25, 26, 28, 32], and [33] utilised different versions
of the VGG network. For VGG16, Ref. [42] achieves the
highest with 97.80% while Ref. [25] scores the lowest accuracy
of 50.03%. Wan et al. [31] obtained the highest specificity and
sensitivity with 94.32% and 90.78% respectively. The lowest
accuracy is obtained by Ref. [25] with 50.03% while the lowest
specificity and sensitivity are by Ref. [41] with 50.50% and
89.50%, respectively. The implementation of VGG19 obtained
by Ref. [24, 33] gives an accuracy of 97.40% and 80.76%,
respectively.

For ResNet, the authors of Ref. [29, 31] did not mention
the number of layers of ResNet used in their works. Wan
et al. [31] achieved higher accuracy than Ref. [29] with
90.40%. The specificity and sensitivity obtained are 95.56%
and 88.78%, respectively. Ref. [42] obtained the highest ac-
curacy of 97.90% with ResNet18 and Ref. [29] achieved the
lowest accuracy of 65.83%. The specificity and sensitivity
achieve higher than 93% and 73%, respectively, overall with
Ref. [31] obtaining the highest specificity of 95.56% and the
highest sensitivity of 88.78%.

The authors of Ref. [1, 24, 25, 31, 36, 40, 42], and [29]
employ different version of Inception architecture. Khalifa
et al. [42] achieved the highest accuracy 96.30% while the au-
thors of Ref. [1] obtained the highest specificity and sensitivity
with 95.00% and 81.00%, respectively, by using GoogLeNet.
Ref. [29] achieved the lowest accuracy for GoogLeNet with
65.56%. The accuracy obtained by the authors of Ref. [24, 25,
29], and [36] for implementing Inception‐V3 is higher than
80% except for the authors of Ref. [25] who scores only
63.23%. The highest accuracy, specificity, and sensitivity for
Inception V3 are achieved by Ref. [36] with 93.49%, 93.45%,
and 96.39%, respectively. Ref. [36] also achieved an AUC of
0.978. For Inception V4, Ref. [40] obtained 94.60% and
91.55% for specificity and sensitivity, respectively. Reguant
et al. [1] employed Xception and scores 95% of accuracy, 96%
of specificity, and 86% of sensitivity. For SqueezeNet, Ref. [42]
achieved accuracy of 97.80%. Riaz et al. [38] used DenseNets

to achieve the highest sensitivity and specificity with 98% with
AUC of 1.

In this work, the DL models from research studies in
2021–2022 were listed and the differences between models and
its performance are compared. The highest accuracy is by
Nneji et al. [34] with 98.50% when the features are extracted
using Inception V3. There are 3 models that achieved a
specificity of 98% which is Nneji et al. [34] and Devi et al. [36].
Nneji et al. [34] also achieved a sensitivity of 98.90% which is
the highest among the models that has been reviewed in the
paper. Overall, the Inception V3 model that has been trained
using CLAHE images performed the best.

It was observed that most networks are high‐performing
models where the results achieved are good enough. The
number of images and CNN models play an important role in
obtaining results with high accuracy, specificity, and sensitivity.
A small CNN model with a small dataset is enough to obtain
good results if the tuning is done correctly. A large dataset does
not guarantee high accuracy; however, increasing the dataset
can improve the performance of the network. There are
studies with a considerably small dataset that achieves good
results due to the good quality of images. Retinal images are
pre‐processed to enhance the image quality and features can be
easily defined. With these images, the network can learn the
extracted features for each class better. Studies with a large
dataset can learn variations of image features for each class
despite using unprocessed images. In real‐life applications,
images obtained may not be high‐quality images all the time;
thus, having low‐quality images is excellent practice to make a
good performing classifying model for clinical settings.

5 | CHALLENGES AND FUTURE WORK

In this paper, 19 existing works related to DR were reviewed.
All the studies presented had utilised the CNN model from DL
for DR grading to 5 severity levels. The models are either
custom‐built CNN (Ref. [21, 23, 26, 28, 30]), ensemble learning
(Ref. [20, 22]) or by performing transfer learning whereas (Ref.
[1, 21, 23–29, 31, 36–42]). The customised CNN model is
doable if there are enough resources, in terms of sizes, number
of images as the customised CNN model or ensemble learning
is done with a huge dataset. Transfer learning uses existing
networks; therefore, it has proven its credibility in image
classification. Transfer learning might be a better option as it
does not require a large dataset and is time‐saving. The chal-
lenges and future works in this area include dataset size,
imbalanced data issues, CNN‐based DR grading performance,
interpretability of the features in the CNN model, and CNN
model that is worth further exploration.

It has been noticed that there has been a rise in published
studies on DR especially after DL is widely used in medical
imaging [62]. Despite the different approaches used in building
a DR classification system, it has been noted that huge data
size is needed for the training. The current public datasets are
composed of good quality images, thus, making the system to
be unrealistic at the moment as retinal images in real life may
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not be as good as the current training images as there are more
diverse populations of patients with diabetes as mentioned by
Abramoff et al. [62].

Overfitting is one of the critical issues faced during
training. When the number of epochs used to train a network is
more than necessary, the training model learns the pattern to
the point of memorising the patterns that are specific to the
sample data. This causes model to be incapable of performing
well on a new dataset. Due to this reason, most of the studies
apply early stopping to their model [1, 9, 27]. The training is
stopped as soon as the training graph starts to overfit, or the
error starts to increase.

One of the limitations of applying DL in the medical field
is the size of the datasets needed to train a DL model [63]. It
has been observed that in public datasets, the number of im-
ages for each level is imbalanced. Mostly the number of images
for No DR or normal is extremely more than the other levels
which may affect the performance of the classification model.
Researchers need to be careful in performing data augmenta-
tion as it can cause misinterpretation of the actual disease
especially if the model is intended for real‐life clinical
deployment. Thus, to build a robust DL classification model,
the DL algorithm needs to be adaptive to imbalance issues.

Another point that should be discussed is the ability of the
model to classify images from a different dataset [34]. Despite
achieving high accuracy for classification, the credibility of the
model when tested against a different dataset should be ques-
tioned. The model is trained using images with differences in
labelling, noise and other factors that are taken into account. For
example, the accuracy of a model tested against an EyePACS is
75.09% and Messidor‐2 is 96% by [41]. This indicates that the
model should be sensitive towards the feature noise in a dataset
[64]. Therefore, the model that has been trained by taking into
account different conditions should be able to perform well,
despite being taken using a low‐quality fundus camera.

The performance of a CNN model for DR grading is
dependent on the quantity and quality of retinal images.
Creating a variety of data with different ethnicities is needed to
allow the model for DR grading in clinical settings to prevent
biases. The structure of the eye varies with ethnicity [65]; thus,
it is needed to confirm the robustness of the model in grading
retinal images for DR. Variation of data during training and
validation may increase the model performance [27].

Poor image quality acquisition during mass DR screening is
inevitable [66]; thus, additional image quality assessment is
needed to make the model functions well in such a situation.
Regardless of the image quality, DL models should be capable
in classifying these types of images in order for the model to be
implemented in real‐life application. The DL models need to
capture the features, then, differentiate and grade the images
accordingly. Otherwise, images with low illumination and
determining features will be missed causing misclassification.
Hence, the reliability of DR grading should be questioned as
mislabelled images may lead to unreliable measurement of the
model's final performance.

In Ref. [67], the user does not know the features used in
the CNN whereby the interpretability of the DL model is still a

black‐box, making the explanation of the network and pro-
cessing complicated [1, 47], and [68]. The Convolutional
Neural Network is only provided with the images and their
associated grade without the definitions of features related to
its grade. Thus, an exploration of the layers is necessary to
comprehend the feature at the pooling layer of the network.
This is somewhat true as a user only cares about the accuracy
achieved after the training process. The training process is still
a mystery as the kind of features that are learnt by the model is
still unknown. It would be interesting if the features that were
used for DR grading at the pooling layer were to be investi-
gated. By doing so, the model performance could be improved
by removing unnecessary layers. A detailed experiment at the
pooling layer is necessary to distinguish the features used by
the model in determining the grades. Thus, after the network
has been trained by going into each layer, an overview of how
to improve the model performance will be given. However, it is
a challenge to go through individual layers; finally, it can add
value to the overall operational time of the network.

Currently, the lack of a system that could accurately classify
DR to 5 severity levels and detect DR lesions is a gap that
needs to be filled [63]. The model's capability to be imple-
mented in real‐world clinical settings is still insufficient. Since
DR screening can be performed by someone who does not
know DR grading, the model should fit its purpose of assisting
experts in grading retinal images. In clinical situations, the
distribution of images for each severity level may be unbal-
anced, and the images may be of poor quality, significantly
reducing the model's performance. Further experiment is
necessary by using an extensive amount of training and vali-
dation data with a mixture of high‐ and low‐quality retinal
images. This can be considered as a current research challenge
for researchers that needs to be investigated further.

Another major challenge in DR grading is inefficient pre‐
processing for preparing the training data. For accurate clas-
sification of DR images, the distinctive features need to be
addressed more carefully. Due to the highly varied microvas-
cular structure of the human retina and inefficient imaging
strategy, distinguishing the target features for data classification
from a massive dataset appears as a big challenge. In most
cases, it is almost impossible to differentiate the background
and foreground of training retinal images as the pixel intensity
is nearly the same. In some cases, almost all the images have a
very tiny difference in abnormal DR features which offers an
ultimate challenge for grading the training samples. These is-
sues need careful attention as a well‐prepared training dataset is
crucial for maximising the performance of the newly devel-
oped DR grading algorithm. To address this issue, experienced
personnel and an effective pre‐processing strategy need to be
involved in the acquisition system.

In future work, it is necessary to explore in‐depth the CNN
model to enhance model performance in DR grading. The
Inception model can be the focus for further exploration.
Furthermore, the features used by the model to classify images
will need to be studied as the number of occurrences for each
class are different which will affect the learning process of the
model. Quality of images plays a role in training the model in
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which a model should be able to work with low quality images.
Hence, a CNN model with high performance and reliablity will
be created for DR grading.

6 | CONCLUSION

Automated DR grading is necessary for clinical settings to
assist the ophthalmologist in grading retinal images as the
number of diabetic patients has been increasing. With the
advancement of DL, studies on the application of CNN in DR
grading have been on the rise. This article reviews existing
studies that have been covered on the CNN application for DR
grading. Datasets can be obtained from multiple resources,
either public or private, which have already been labelled to
their significant grades. Various CNN models either custom-
ised to cater to DR grading or a pre‐trained model have been
applied in retinal image classification to achieve high accuracy
so that these models can be applied in clinical settings.

The CNN approaches in DR grading whether for the
detection or grading differ in the number of classes used.
Knowing the presence of DR and its progressiveness helps in
deciding the best treatment for the patients. The usage of CNN
models for the classification of retinal images affects the per-
formance measures. As can be seen, each study used a different
model, either customised CNN model, transfer learning, or
ensemble learning. The results achieved from these models have
been relatively high. However, it is noted that it is currently
difficult to implement the models in clinical settings as more
testing must be carried out before its usage is approved.
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