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ABSTRACT

Joint Posterior Inference for Latent Gaussian Models and extended

strategies using INLA

Cristian Chiuchiolo

Bayesian inference is particularly challenging on hierarchical statistical models as

computational complexity becomes a significant issue. Sampling-based methods like

the popular Markov Chain Monte Carlo (MCMC) can provide accurate solutions,

but they likely suffer a high computational burden. An attractive alternative is the

Integrated Nested Laplace Approximations (INLA) approach, which is faster when

applied to the broad class of Latent Gaussian Models (LGMs). The method computes

fast and empirically accurate deterministic posterior marginal approximations of the

model’s unknown parameters. In the first part of this thesis, we discuss how to extend

the software’s applicability to a joint posterior inference by constructing a new class of

joint posterior approximations, which also add marginal corrections for location and

skewness. As these approximations result from a combination of a Gaussian Copula

and internally pre-computed accurate Gaussian Approximations, we name this class

Skew Gaussian Copula (SGC). By computing moments and correlation structure of

a mixture representation of these distributions, we achieve new fast and accurate de-

terministic approximations for linear combinations in a subset of the model’s latent

field. The same mixture approximates a full joint posterior density through a Monte

Carlo sampling on the hyperparameter set. We set highly skewed examples based on

Poisson and Binomial hierarchical models and verify these new approximations using

INLA and MCMC. The new skewness correction from the Skew Gaussian Copula is

more consistent with the outcomes provided by the default INLA strategies. In the
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last part, we propose an extension of the parametric fit employed by the Simplified

Laplace Approximation strategy in INLA when approximating posterior marginals.

By default, the strategy matches log derivatives from a third-order Taylor expansion

of each Laplace Approximation marginal with those derived from Skew Normal dis-

tributions. We consider a fourth-order term and adapt an Extended Skew Normal

distribution to produce a more accurate approximation fit when skewness is large.

We set similarly skewed data simulations with Poisson and Binomial likelihoods and

show that the posterior marginal results from the new extended strategy are more

accurate and coherent with the MCMC ones than its original version.
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Chapter 1

Introduction

1.1 General Overview

Approximate Bayesian theory always seeks new methods to recover the underlying

posterior density assumption of the model at a minimum cost. When using ap-

proaches that rely on sampling from proposal distributions such as Markov Chain

Monte Carlo (MCMC), we often need to come to terms with possible convergence is-

sues and poor speed performance due to model dimension and complexity (Robert and

Casella (2011)). In particular, hierarchical models can suffer from slow convergence

to reach accurate stationary results if the model parameters are highly correlated.

Even block joint sampling strategies using Gibbs-Metropolis algorithms or auxiliary

variable methods may not be enough to reduce such high computational time. In

other cases, convergence may not even approach an end, making the inference unfea-

sible. However, a sub-class of hierarchical models ignores most of these issues. This is

the class of Latent Gaussian models (LGMs) whose latent field structure, containing

all the unobserved parameters, is assumed to be Gaussian distributed. Like gener-

alized linear regression models, these mathematical models follow a similar additive

structure in the linear predictor which can also allow more functional and complex

structures such as splines, time series or spatial fields. The additive structure com-

bined with the Gaussian prior assumption onto the latent field offers a natural way to

encode data information into a precision matrix. Compared to dense covariance matri-

ces, these precision matrices are sparse and provide good storage solutions. Numerical
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linear algebra approaches efficiently take care of this sparsity, leading to a speed-up in

the computations. The Integrated Nested Laplace Approximation (INLA) approach

(Rue et al. (2009)) takes the most advantage of these features when applied to Latent

Gaussian Models. Such methodology completely bypasses the computational burden

and diagnostic needs of sampling-based strategies. The INLA algorithm is determin-

istic and offers a user-friendly R software interface that computes univariate marginal

approximations for Latent Gaussian Models. In this work, we dig into extending the

methodology to joint approximations as well. As a statistical software for Bayesian

statistical analysis, INLA provides a unique algorithm for tackling Bayesian problems

by relying on Gaussian and Laplace approximations. We can find many applications

in different scientific fields: health data analyses in Alvaro-Meca et al. (2013); Li

et al. (2012); Seppä et al. (2019); spline models applied in medicine in Bauer et al.

(2016) or spatial/Spatio-temporal models in Beguin et al. (2012); Gómez-Rubio and

Palmı́-Perales (2019); Gómez-Rubio et al. (2021); Yuan et al. (2017); Meehan et al.

(2019); Peluso et al. (2020); Pereira et al. (2021); measurement error models in Muff

et al. (2015); modelling applications in Quiroz et al. (2015); Ferkingstad et al. (2017);

Sørbye et al. (2019a) and air data in Dawkins et al. (2019); a functional data analysis

in Yue et al. (2019) and time trends for related populations in Riebler et al. (2012a,b);

environmental data applications in Huang et al. (2017) and Illian et al. (2012) with

some genetics in Holand et al. (2013); dynamic and stochastic volatility models re-

spectively in Ruiz-Cárdenas et al. (2012); Martino et al. (2010a); joint models and

survival applications in Martino et al. (2010b); Van Niekerk et al. (2019); Rustand

et al. (2020). The advancements of the R-INLA project (see www.r-inla.org) are

remarkable and have defined new standards for Bayesian statistics problem solving by

enlarging the realm of possibilities. A neverending constant development of the soft-

ware allows expanding the researcher’s toolbox with new features and more options.

This thesis aims to offer a detailed introduction to the software and its methodology

www.r-inla.org
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while discussing new extensions that enhance the performance of INLA marginal and

joint approximations.
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1.2 Objectives and Contributions

This thesis lays down theoretical details for applying joint posterior inference onto

Latent Gaussian Models using R-INLA software from Rue et al. (2009) by introducing

accurate mixtures of posterior approximations with marginal skewness adjustments.

When Gaussian assumptions do not hold, we require the approximations to the target

true posteriors to be more flexible in modeling extremely skewed observations. We

use available INLA strategies to build marginal and joint approximations that encode

location and skewness corrections. In order to deal with more extreme settings char-

acterized by highly skewed data, we construct new approximations by introducing

Gaussian copulas and other Skew Normal family densities. While Chapter 2 serves

as an entry point for a general introduction of the INLA methodology and its appli-

cations, the main findings and new built-in tools of this thesis are given in Chapter 3

and Chapter 4. Chapter 2 gives a detailed background of the computational aspects

of INLA from its core structure up to the use of Laplace approximations for fitting

posterior outcomes. Essential concepts are Gaussian Markov Random Fields (GM-

RFs) to represent the latent field structure of the model (see Rue and Held (2005)) in

terms of precision matrices, whose sparse structure provides a computational speed-

up as opposed to dense covariance matrices. In Chapter 3 we introduce the class

of Skew Gaussian Copula densities to build joint posterior approximations for La-

tent Gaussian Models, which combine a Gaussian Copula on the latent field whose

marginals are being adjusted for location and skewness. This class of joint approxima-

tions improves the internal Gaussian Approximation in INLA used to achieve accurate

posterior marginal approximations of the unknown parameters in the model. When

embedded into R-INLA, a mixture representation of Skew Gaussian Copula densities

opens possibilities for additional accurate and fast approximations. In well-defined

subsets of the latent field, we can construct deterministic approximations for posterior

marginals and additive linear combinations by analytically computing and matching
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moments of this mixture representation with the ones from Skew Normal densities.

Similarly, the same mixture representation of Skew Gaussian Copula densities can be

used to achieve a full joint posterior approximation of a Latent Gaussian Model by

taking into account the hyperparameter uncertainty as well. To accomplish this task,

we exploit an exact Monte Carlo sampling approach on a discrete representation of

the hyperparameter joint posterior density since the mixture representation does not

have a deterministic form. All the approximations we get are closer to the truth and

consistent with the results provided by INLA default strategies. Chapter 4 adds a

new extension to one of the most used strategies in INLA known as Simplified Laplace

strategy (see Rue et al. (2009) for details and Wood (2020) for an alternative ver-

sion). This default approach is efficient in most cases as it ensures fast and accurate

posterior marginal approximations while avoiding the more costly full Laplace strat-

egy. Such results are obtained by matching higher-order derivatives of a third-order

Taylor expansion of the Laplace Approximation to those derived from Skew Normal

distributions. The Skew Normal fit may suffer inaccuracies in more extreme settings

than the more accurate full Laplace approximations, especially around the mode. We

proposed to reduce this accuracy gap by using another Skew Normal family density:

the Extended Skew Normal distribution. This new parametric choice satisfies similar

Gaussian boundaries and tail properties proper of the Gaussian and Skew Normal

density but provides an additional parameter to better model skewness. Then we can

extend the Simplified strategy by fitting instead Extended Skew Normal distributions

to a fourth-order expanded Laplace approximation. The results show that the new

parametric assumption can recover extreme skewed posterior outcomes better than

the default Simplified strategy, therefore, encouraging to seek more alternative model

solutions (other improvements towards Laplace approximations can be seen in Ruli

et al. (2014); Ruli and Ventura (2016); Ruli et al. (2016)).
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Chapter 2

Introduction to INLA: Integrated Nested Laplace

Approximations

This chapter introduces the standalone R software named INLA (Integrated Nested

Laplace Approximations) from Rue et al. (2009), whose first official release dates

back to 2008 as a result of H̊avard Rue’s work. The software provides a fast and re-

liable deterministic approach for tackling complex Bayesian problems in the context

of a broad class of hierarchical models known as Latent Gaussian Models (LGMs).

It quickly computes approximations for the univariate posterior marginals of the

unknown model parameters using strategies based on Gaussian and Laplace Approxi-

mations. Section 2.1 provides some general info of the INLA software correlated with

a few insights on its origins. A mathematical formulation of the hierarchical structure

of the class of Latent Gaussian Models is presented in Section 2.2. This class contains

many well-known statistical models, and some of them are used as applied examples

for this thesis. Prior assumptions on the latent field components are discussed in

Section 2.3 where we introduce the mathematical concept of Gaussian Markov Ran-

dom Fields (GMRFs) (see Rue and Held (2005)) and the importance of using sparse

precision matrices. Section 2.4 provides a general overview of the Laplace Approx-

imation technique, which is extensively used in INLA to obtain accurate empirical

approximations from a mixture representation of target posterior marginals. Then

Section 2.5 describes mathematical and computational details behind the available

strategies, which allow an Approximate Bayesian analysis of Latent Gaussian Mod-

els. This introduction permits grasping the main details and advantages of the INLA
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methodology, offering a solid background for both understanding the new joint pos-

terior inference tools in Chapter 3 and the new proposed extended INLA strategy in

Chapter 4.

2.1 INLA in the Bayesian World

Since its official appearance on the global statistic community Rue et al. (2009),

INLA has quickly become incredibly popular. We can summarise this aspect in two

factors: a user-friendly interface freely available in the R language, whose code re-

lies on a combination of C/C++ and R/Fortran lines, and a deterministic algorithm

that achieves solutions at high speed and accuracy with proper scaling properties. We

must underline this point: speed and accuracy make INLA what it is nowadays. Well-

known sampling-based approaches like Monte Carlo (MC) or Markov Chain Monte

Carlo (MCMC) tackle Bayesian inference problems that provide the highest accu-

rate results under correct assumptions. Therefore they represent the most natural

counterpart to INLA in this field of applications. Still, they lack speed performance

compared to INLA when applied to hierarchical models. Some MCMC based available

software are JAGS (Plummer et al. (2003)), STAN (Carpenter et al. (2015),Carpenter

et al. (2017)), BayesX (Lang et al. (2005)) and NIMBLE (de Valpine et al. (2017)).

These programs provide ways to build procedural MCMC algorithms that are still

slower than the scientific community would like them to be. Bayesian computa-

tional researchers always seek new alternatives to efficiently approach most modeling

problems quickly while exploiting the full computer capacity. INLA is the first em-

bodiment of natural program performance as it avoids sampling and post-diagnostic

analyses, unlike its MCMC counterparts. The first ideas came out when it was clear

that most statistical models could be cast in a broad, unique class with an additive

linear model structure on its linear predictor component that is Gaussian distributed.

This is the class of Latent Gaussian Models (LGMs), where the unknown parameters
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of the model belong to a latent Gaussian structure, meaning that most of these are

unobserved and Gaussian distributed. Many widely used statistical models like GLM,

GAM, GLMM, GAMM belong to this class. For example, we can fit splines, time

series, measurement error, or spatial and spatio-temporal models by encoding part of

their structure into random effects of the Latent Gaussian Model framework. Thus,

we can think of INLA as the product of three main mathematical concepts:

• Latent Gaussian Models, LGMs

• Gaussian Markov Random Fields, GMRFs

• Laplace Approximations, LAs

The following sections will go through the details of each item above, with particular

emphasis on their correlation and synergy. These three topics define the main as-

sumptions and tools needed for INLA to provide comparable and appealing outcomes

in a Bayesian inference analysis.

2.1.1 Historical background of INLA

Before moving on to the details behind the INLA methodology, we first want to

provide some historical context for a deeper insight. While the entire project required

more than ten years of work, the first ideas appeared around 2002-2004 when H̊avard

Rue and Leonard Held became aware of Latent Gaussian Models. In the period

2002-2005, Rue developed a C-library code named GMRFLib for the book Rue and

Held (2005) where he wrote and applied many algorithms involving Gaussian Markov

Random Fields (GMRFs) and precision matrix factorizations that would have later

played a major role in the main INLA core. The algorithm’s first working user-

friendly implementation was entirely built on C code in 2007, with many hand-crafted

input files of varying length and complexity. Arnoldo Frigessi, who was living in

Oslo, suggested that an R interface would have eased the spreading of the software
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throughout the statistical community. Between January and February 2008, Sara

Martino wrote a working prototype for the R-INLA interface. The first official INLA

paper explaining its main ideas appeared in 2009 in the Royal Statistical Society

Journal Rue et al. (2009). A second INLA paper regarding the INLA outbreak on

the geostatistic field with the SPDE approach was published in 2011 again in the

Royal Statistical Society Journal Lindgren et al. (2011). New extensions of the INLA

algorithm were published the same year by Simpson et al. (2011). Furthermore, new

features came out in 2013 with Martins et al. (2013). Here, the aim was to summarize

the original INLA work from 2009 by adding more insights into the interpolation

algorithms used to approximate the hyperparameter posterior marginals. In these

years, more papers and books about the R-INLA software became available: more

extensions on Martins and Rue (2014), a measurement error model focus on Muff

et al. (2015), the concept of Penalised Complexity priors on Simpson et al. (2017),

criticisms and Bayesian model diagnostics on Ferkingstad et al. (2017), spatial and

spatio-temporal models on Blangiardo et al. (2013) and way more. For more books,

software-related papers, and examples, one can check the official R-INLA website on

www.r-inla.org. A first INLA review correlated with examples was published in

2017 by Rue et al. (2017). In May 2018, the new PARDISO (Schenk and Gärtner

(2004)) library project for doing high-performance computing was embedded into

the R-INLA interface. For more details about the PARDISO library and its use in

INLA see the link https://pardiso-project.org/r-inla/. PARDISO represents

one of the most efficient libraries for doing parallel computations on large sparse

matrices according to Gould et al. (2007). A second INLA review on the original

SPDE approach was published in 2018 by Bakka et al. (2018). In the same year, an

advanced spatial book on INLA-SPDE applications by Krainski et al. (2018) became

available. The first application of PARDISO library in INLA appeared on a joint

models paper in 2019 by Van Niekerk et al. (2019). The third review of R-INLA was
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published in 2019 by Martino and Riebler (2019). Nowadays, the complete source

code of the INLA algorithm counts more than 106 lines in R/C/C++ languages.

2.2 Class of Latent Gaussian Models

Latent Gaussian Models (LGMs) are hierarchical statistical models whose linear pre-

dictor η has an additive structure with respect to the unknown parameters. This

formulation allows significant computational advantages and accurate outcomes when

other assumptions are involved. We can write each linear predictor term as

ηi = γ0 +

nJ∑
j=1

γjzij +

nK∑
k=1

fk(uik) + εi for i = 1, . . . , n (2.1)

where ηi corresponds to response observation yi through a link function g(µi) = ηi in

terms of the mean component µi with n being the total number of data observations.

From (2.1) we observe the nature of different covariates that can be part of the model

structure: γ0 refers to the overall intercept of the model, the {γj}’s describe the fixed

and random coefficients assigned to each covariate zij while {fk(uik)}’s represent

unknown defined linear or non-linear functions associated with the covariates {uik}

in terms of each random effect k. The terms nJ and nK denote the fixed and random

covariate dimension while εi is a Gaussian distributed noise error. Since the linear

predictor belongs to the latent field x structure in (2.1) by construction, the overall

dimension would be N = n+ nP where nP = nJ + nK + 1 denotes the total number

of unknown parameters in the model to be estimated. The Gaussian assumption on

the unstructured noise term εi is required to avoid singularity issues of the covariance

matrix in the computations (see Section 2.2.3 for a detailed example). An alternative

is to avoid adding the noise term in the linear predictor structure by using cumulative

sums. Briefly we consider η = f 1 +f 2 + · · ·+f l, where each f i is a vector of fixed or

random parameters of the model with some well-defined precision matrix structures.
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Then we construct new variables {v1,v2, . . . ,vl} such that vi+1 − vi = f i. By

construction, the joint density of these new variables is π(v1, . . . ,vl) = π(v1)π(v2|v1)·

· · · ·π(vl|vl−1) with a joint precision structure given by blocks of sum of the precision

matrices related to each component f i. Thus we can directly apply posterior inference

on f 1 and η as v1 = f 1 and vl = η while the same does not apply on the other

model components which are now encoded as differences of the new variables. Such a

strategy avoids possible mathematical issues of the covariance matrix and reduces its

dimensionality at the cost of making inference for some of the original components

harder. It can be useful in settings where the interest lies on a few parameters only

or the linear predictor itself while avoiding singularity issues (see an application in

Sørbye et al. (2019b)). Soon a new version of INLA where the linear predictor is not

part of the latent field anymore will be officially available together with improved

applications of the Laplace Approximation (see van Niekerk and Rue (2021); van

Niekerk et al. (2022)). Depending on the nature of the functions fk(uik)’s we can fit

many different statistical models. Here is a list of some of them

• GLM, GLMM, GAM, GAMM

• Measurement error models

• Dynamic models

• Splines, Semiparametric regression models

• Log Gaussian Cox processes

• Stochastic volatility models

• Disease mapping models using Besag, BYM and other stuctures

• Geostatistics models

• Survival analysis models, Joint models
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• Longitudinal models

• Spatial and Spatio-temporal models

This list clarifies the significant flexibility of Latent Gaussian Models, therefore, en-

abling INLA to be applied on many different statistical problems. The additive

structure of the linear predictor in (2.1) where each fixed, random, functional com-

ponent is Gaussian distributed is greatly beneficial to this model framework and its

applications in INLA. Such formulation leads to a well-defined representation of the

latent field x into a Gaussian Markov Random Field (GMRF) representation.

2.2.1 Hierarchical structure of Latent Gaussian Models

Latent Gaussian Models follow a general hierarchical structure which is appealing for

a Bayesian analysis using INLA. Therefore we must provide an accurate formulation.

We consider data {yi}ni=1 and unknown parameters θ = (θy,θx) where θy are the

hyperparameters assumed for the model likelihood while θx accounts for the hyper-

parameter set of the latent field x. We can then define a Latent Gaussian Model

through a three-stage hierarchical structure as follows

y|x,θy ∼
n∏
i=1

π(yi|xi,θy)

x|θx ∼ N(0,Q−1(θx))

θ ∼ π(θ) (2.2)

The second stage in the hierarchy assumes the latent field x to be Gaussian dis-

tributed a priori with a zero mean. A more general mean, which can also depend

on hyperparameters, can be easily added at a later stage. This assumption is one

of the most important for the model formulation since it leads to fast computational
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performance when GMRFs are used (see Chapter 4 for details). The latent field is a

random vector that contains all the model’s unknown parameters where each term is

linked to one and only one observation yi. From equation (2.1), the latent field is

x = {η, γ0, γ1, γ2, . . . , f1(·), f2(·) . . . } (2.3)

which is assumed to be Gaussian distributed with a sparse precision matrix Q. Here

we notice that the linear predictor η indeed is part of the latent field object together

with all the other parameters. In Bayesian terms, we point out that a precision matrix

is the inverse of the covariance matrix denoted as Σ. The multivariate Gaussian

prior on x is the result of assuming Gaussian priors for each parameter in (2.3). The

linear predictor η belonging to the latent field x is part of a scheme that allows

stable computations in INLA (see Section 2.2.3 for an example). Using precision

matrices instead of their covariance counterpart is not a random choice as attractive

properties sustain it. Sparse precision matrices allow easy to handle manipulation

and fast factorizations therefore leading to speed up in the computations when the

sparse structure is significant (details on Section 2.3.3). The same does not apply to

covariance matrices which are generally dense. In high dimensional settings, the cost

becomes incredibly high due to many operations and storage issues. Both Gaussian

assumptions of the latent field and sparsity in its precision matrix represent important

properties for fast and accurate inference in INLA. A summary of these assumptions

is given below:

1. |θ| must be small, less than 20. This set of hyperparameters can appear both

in the likelihood and latent field, affecting the number of operations required

by INLA to compute the solutions;

2. the latent field x has to be Gaussian distributed with a sparse precision matrix

Q. More precisely, we say that x is required to satisfy some well-defined condi-
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tional independent Markov properties. Later we will encode all these properties

into a Gaussian Markov Random Field (GMRF) representation;

3. there must exist conditional independence between the data y and the entire

set of parameters given by (x,θ). This means that we have a one to one

correspondence between each data point yi and latent field component xi where

most of them are not observed.

From (2.2), we can easily compute the joint posterior distribution of a Latent Gaus-

sian Model as follows

π(x,θ|y) ∝ π(θ)π(x|θx)
n∏
i=1

π(yi|xi,θy)

∝ π(θ)|Q(θx)|
1
2 exp

(
−1

2
xTQ(θx)x+

n∑
i=1

log[π(yi|xi,θy)]
)

(2.4)

This joint distribution is unknown and can be hard to handle in high dimensional

settings which is generally the case as both n and N can be large. The main INLA

scope is to construct posterior marginal approximations for x and θ) independently.

These resulting univariate approximations are empirically accurate and fast to com-

pute by employing built in strategies (see Section 2.5). By their deterministic nature,

we can use these approximations to get any posterior outcome for a Bayesian analysis:

moment summaries, credible intervals, model diagnostics, and more. If we need infor-

mation from the joint posterior density above for specific combinations of the model

parameters (functionals), INLA can also achieve a corresponding joint approxima-

tion by relying on an exact Monte Carlo sampling approach with skewness corrected

marginals (see Chapter 3 for details).
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2.2.2 Insight on precision matrix Q

First, we should introduce why precision matrices have many preferable properties to

covariance ones. The sparsity pattern of a precision matrix boosts INLA efficiency in

computations and allows better storage of data observations within a LGM context.

Using a more straightforward example of the structure in (2.2), we can point out

another favorable result derived from the Q matrix structure.

Definition 1 (Joint Q matrix of a 2-stage model)

Consider a first stage data model y ∼ N(x,Q−1
y ) and a second stage of the structure

x ∼ N(0,Q−1
x ). Then the joint precision matrix of the bivariate random variable

z = (x,y) is

Qz =

Qx +Qy −Qy

−Qy Qy

 (2.5)

This simple example underlines an essential key point that INLA exploits a lot. Any-

time a change occurs in one of the parameters in the above structure, we need to

recompute the joint matrix Qz. However, according to (2.5), there is hardly any-

thing to recompute in this case since only one element in the sum changes. This factor

is heavily present in the INLA framework since the joint precision matrix of the latent

field may depend on one or more hyperparameters. Therefore, each hyperparameter

change or point evaluation leads to a recomputation of the matrix. Based on the

LGM structure in (2.2), it is undoubtedly more efficient to work with precision ma-

trices to keep computations at their minimum. On the contrary, the joint structure of

covariance matrices is more cumbersome and requires more operations when recom-

puting all the terms. When looking at this example, we can recall a particular case

of the Kalman-Filter or Kalman update algorithm as the whole process is recursively

updated every time we add a new term in the structure.
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2.2.3 Singularity Feature in the latent field

From Section 2.2.1, we know that the latent field x is the prior stage on the un-

observed parameters of a Latent Gaussian Model. This field contains the set of all

unknown parameters augmented with the linear predictor parameter η itself. This

augmentation is redundant in the fitting process but allows a straightforward approx-

imation of the posterior linear predictor marginals. By encoding this information

into the latent field, we are purposely forcing the resulting covariance structure Σ

to be singular since the linear predictor term η is a linear combination of the same

parameters plugged in the field. To avoid this singularity, we add a Gaussian noise

term ε to the linear predictor structure keeping the original assumptions untouched.

We can look more into what this entails by setting a toy example. Consider a generic

LGM model with one covariate z and no hyperparameters θ. Its linear predictor

term would be

η = β01 + β1z + ε (2.6)

with independent parameters β0 and β1 and ε being the additional noise parame-

ter. Both the entire set of parameters (β0, β1, ε) and latent field x = {η, β0, β1} are

Gaussian distributed by model assumption. The noise must be small to minimize its

effect in the fitting process and posterior results. The hyperparameter τε keeps track

of the noise effect and is assumed to be fixed and equal to exp(15) by default. This

singularity feature represents an excellent ploy in the INLA methodology. Adding a

noise quantity into the latent field partially solves the singularity issue in the covari-

ance structure where its determinant would be close to zero. The corresponding joint

posterior distribution of the model is

π(x|y) ∝ π(β0, β1)
n∏
i=1

π(ηi|β0, β1)
n∏
i=1

π(yi|β0, β1) (2.7)
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Based on Rue et al. (2009), Rue et al. (2017), the joint precision matrix is

Qjoint =


τεI τεIz τεI1

τεz
T I τβ1 + τεz

Tz τεz
T1

τε1T I τεz
T I τβ0 + τε1T1

 (2.8)

which has dimension (n+ 2)× (n+ 2) as the data dimensionality is n. By inverting

Qjoint we get the joint covariance structure

Σjoint =



σ2
η1

ση1η2 ση1η3 . . . ση1ηn −z1σ
2
β1

σ2
β0

. . . σ2
η2

ση2η3 . . . ση2ηn −z2σ
2
β1

σ2
β0

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . σ2
ηn −znσ2

β1
σ2
β0

. . . . . . . . . . . . . . . σ2
β1

0

. . . . . . . . . . . . . . . 0 σ2
β0


(2.9)

where σ2
ηi

= σ2
ε + z2

i σ
2
β1

+ σ2
β0

and σηiηj = zizjσ
2
β1

+ σ2
β0

, ∀i, j. The noise variance of

the parameter ε is identified by σ2
ε while (σ2

β0
, σ2

β1
) are the other parameter variances.

Although the toy example could be generalized to more parameters and covariates,

we can already recognize a proper block pattern in the Σjoint matrix structure in (2.9)

• We define the first block as Σσηi ,σηiηj
which represents the n × n sub-matrix

structure related to the linear predictor term η. The noise parameter σ2
ε belongs

to this block matrix only

• The second block is given by Σβ0,β1 whose 2 × 2 block dimension contains the

variance contribution from the independent parameters (β0, β1)

• the noise parameter σ2
ε only appears in the sub-matrix Σσηi ,σηiηj

by σηi definition

∀i

• The remaining block structure is described by Σ−zσ2
β1
,σ2
β0

= [−zσ2
β1
, 1σ2

β0
] and
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its transpose.

Since the block joint covariance structure is known, we can exactly compute its de-

terminant. For this example we see that

Det(Σjoint) = Det(Σσηi ,σηiηj
)Det(Σβ0,β1 −ΣT

−zσ2
β1
,σ2
β0

Σ−1
σηi ,σηiηj

Σ−zσ2
β1
,σ2
β0

) (2.10)

where Σβ0,β1 − ΣT
−zσ2

β1
,σ2
β0

Σ−1
σηi ,σηiηj

Σ−zσ2
β1
,σ2
β0

is the Schur complement of the ma-

trix Σσηi ,σηiηj
. The determinant of the Schur complement is strictly positive while

Det(Σσηi ,σηiηj
) depends on the noise term σ2

ε . This latter determinant represents the

additional information encoded in the latent field and should be close to zero due to

the noise variance σ2
ε . In this case we see that

Det(Σ(k)
σηi ,σηiηj

) = (σ2
ε )
k + (σ2

ε )
k−1
[ k∑
i=1

ziσ
2
β1

+ kσ2
β0

]
+ I2≤k≤n

{
(σ2

ε )
k−2
[
(k − 1)σ2

β0
σ2
β1

k∑
i=1

z2
i − 2σ2

β0
σ2
β1

k∑
j=1

∑
i<j

zizj

]}
(2.11)

where k < n refers to a sub block of the original n×nmatrix Σσηi ,σηiηj
and I2≤k≤n{. . . }

is an indicator function of terms appearing at k ≥ 2. The notation Σ(k)
σηi ,σηiηj

defines

the sub-matrix of order k of the original n × n covariance matrix Σσηi ,σηiηj
related

to the linear predictor. A simple proof to verify the result for this example can be

obtained by induction on k.

Proof. First we underline two points

• the expression strongly depends on the noise parameter σ2
ε which is close to zero

• the determinant of Σ(k)
σηi ,σηiηj

by degree k is equal to the product of its eigenvalues
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Then we proceed by induction. Assuming the expression to be true for any degree k,

then we have

Det(Σ(k)
σηi ,σηiηj

) = λ1λ2

k∏
i=2

σ2
ε = λ1λ2(σ2

ε )
k−2, for k ≥ 2 (2.12)

where (λ1, λ2) are two eigenvalues strictly positive. It is straightforward to show that

the cases k = 1, 2 are true. For k = 1 we obtain a block with one element only

σ2
ε + z2

1σ
2
β1

+ σ2
β0

(2.13)

which is strictly positive and different from σ2
ε . Hence, it provides the only eigenvalue

λ1 of Det(Σ(1)
σηi ,σηiηj

) as defined in (2.12). Similarly, the case k = 2 ends up being

(σ2
ε )

2 + σ2
ε [z

2
1σ

2
β1

+ z2
2σ

2
β1

+ 2σ2
β0

] + σ2
β1
σ2
β0

(z1 − z2)2 (2.14)

which is strictly positive and different from σ2
ε . As given in (2.12), this result corre-

sponds to Det(Σ(2)
σηi ,σηiηj

) defined as the product of the two eigenvalues of the matrix

structure λ1λ2. To finalize the proof by induction, we need to verify that the formula

is true for k + 1. For the case k + 1 with k > 2, we get
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(σ2
ε )
k+1 + (σ2

ε )
k

[
k+1∑
i=1

ziσ
2
β1

+ (k + 1)σ2
β0

]
+ (σ2

ε )
k−1

[
kσ2

β0
σ2
β1

k+1∑
i=1

z2
i − 2σ2

β0
σ2
β1

k+1∑
j=1

∑
i<j

zizj

]

= σ2
ε

{
(σ2

ε )
k + (σ2

ε )
k−1

[
k∑
i=1

ziσ
2
β1

+ zk+1σ
2
β1

+ kσ2
β0

+ σ2
β0

]

+ (σ2
ε )
k−1

[
(k − 1)σ2

β0
σ2
β1

k∑
i=1

z2
i + σ2

β0
σ2
β1

k∑
i=1

z2
i + kσ2

β0
σ2
β1
zk+1

− 2σ2
β0
σ2
β1

k∑
j=1

∑
i<j

zizj − 2σ2
β0
σ2
β1

k∑
i=1

zizk+1

]}

= σ2
ε

{
λ1λ2(σ2

ε )
k−2 + (σ2

ε )
k−1
(
zk+1σ

2
β1

+ σ2
β0

)
+ (σ2

ε )
k−2

[
σ2
β0
σ2
β1

k∑
i=1

z2
i + kσ2

β0
σ2
β1
zk+1 − 2σ2

β0
σ2
β1

k∑
i=1

zizk+1

]}

= σ2
ε

{[
λ1λ2 + σ2

ε

(
zk+1σ

2
β1

+ σ2
β0

)
+ σ2

β0
σ2
β1

k∑
i=1

z2
i + kσ2

β0
σ2
β1
zk+1 − 2σ2

β0
σ2
β1

k∑
i=1

zizk+1

]
(σ2

ε )
k−2

}

= σ2
ε

{
λ∗1λ

∗
2(σ2

ε )
k−2

}

= λ∗1λ
∗
2(σ2

ε )
k−1 (2.15)

which exactly corresponds to Det(Σ(k+1)
σηi ,σηiηj

) as defined in (2.12).

As soon as k > 2, the determinant quickly drops to zero since the noise variance term

σ2
ε = 1/ exp(15) by default. Algebrically, σ2

ε represents the eigenvalue of Σσηi ,σηiηj

with algebric multiplicity equal to k − 2. In general the determinant of Σjoint would

be of the form

Det(Σjoint) = λ̃1λ̃2(σ2
ε )
n−2Det(Σβ0,β1 −ΣT

−zσ2
β1
,σ2
β0

Σ−1
σηi ,σηiηj

Σ−zσ2
β1
,σ2
β0

) (2.16)
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with λ̃1 and λ̃2 being the two strictly positive eigenvalues related to the parameters

(β0, β1) and n − 2 eigenvalues exactly equal to σ2
ε ≈ 0. The expression in (2.11)

underlines that the more linear predictors we consider, the more quickly we approach

a determinant close to zero as the noise parameter σ2
ε scale all the terms involved.

In this simple toy example, we expect singularity issues at dimension three, where

the noise effect starts to kick in. More extended examples are possible by considering

more than two parameters or more random structures, but we avoid it for simplicity.

New improvements has been made towards this methodology which entirely avoids

such issue by not adding the linear predictor component into the latent field (see van

Niekerk et al. (2022)).

2.2.4 Conditional Independence

While adding a Gaussian noise term to the linear predictor eases inference in Latent

Gaussian Models, sparsity of the precision matrix is another important feature that

we must consider. We introduce the concept of conditional independence, which

allows having useful Markov properties between the latent field terms. Through

this conditional assumption and the multivariate Gaussian prior on the field, we

can adequately encode the latent random vector of a Latent Gaussian Model as a

Gaussian Markov Random Field (GMRF) object. A first probabilistic definition of

the conditional independence is the following

Definition 2 (Conditional Independence)

Consider three random variables X, Y and Z with respective distributions π(x), π(y)

and π(z). Then

X ⊥ Y |Z ⇔ π(x, y|z) = π(x|z)π(y|z) (2.17)

This reads as X and Y are conditionally independent given Z if and only if the

joint distribution of (X, Y ) given Z can be expressed as the product of the univariate
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conditional distributions of X and Y given Z.

According to this definition, there exists a subtle link between covariance Σ and pre-

cision matrix Q. Elements are marginally independent for covariance matrices, while

the same are conditional independent for precision matrices. Hence, we cannot add

much about the information stored in the covariance matrix structure. Instead it

is possible to encode the conditional independent information onto precision matrix

structures (see Section 2.3). We can verify the property above through the factoriza-

tion theorem

Theorem 1 (Factorization Criterion)

Using the same notation of the previous definition we have

X ⊥ Y |Z ⇔ π(x, y, z) = f(x, z)g(y, z) (2.18)

for some functions f(·),g(·) and for all Z with π(z) > 0.

The proof of the theorem comes from applying the conditional independence property.

These results translate into Markov properties of the latent field structure x and lay

the foundation of the whole GMRF theory. We will see that the sparsity structure of

the precision matrix is partially induced by applying (2.17) and (2.18).

2.3 Gaussian Markov Random Fields (GMRFs)

With the multivariate Gaussian prior assumption of the latent field x and the con-

ditional Markov properties onto its terms, we can now define a Gaussian Markov

Random Field (GMRF). This mathematical object is summarised by a random vec-

tor x = (x1, . . . , xN)T whose distribution is Gaussian with a sparse precision matrix

Q. The Markov properties are strictly related to the conditional independence defi-

nition in (2.17) as
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xi ⊥ xj|x−ij (2.19)

for any well defined set {i, j} of indexes where x−ij defines the whole random vector

except xi and xj. If these conditions apply, the GMRF must encode this conditional

information into its structure. Although conditional independent elements cannot be

translated into a covariance matrix structure as it contains marginal information, this

does not apply for precision matrices Q. This property assumes consistency as soon

as we consider the following theorem

Theorem 2 (Q sparsity)

xi ⊥ xj|x−ij ⇔ Qij = 0 (2.20)

where its proof is accomplished by using the factorization criterion in (2.18) for a

fixed set {i, j} (for more details, see Chapter 2 in Rue and Held (2005)). We can then

extrapolate conditional independence for a pair of terms xi and xj from the precision

matrix zero patterns and viceversa. A similar result applies to covariance matrices

where a zero element translates into independence. However, independence is a strong

assumption, while conditional independence is more flexible and interpretable. Now

we can define a GMRF through its Q-matrix representation

Definition 3 (Gaussian Markov Random Field (GMRF))

A random vector x = (x1, . . . , xN)T ∈ RN is referred as a GMRF with respect to the

(undirected) graph G = (V , E) with mean µ and precision matrix Q > 0, if and only

if its density has the form

π(x) = (2π)−
N
2 |Q|

1
2 exp

(
−1

2
(x− µ)TQ(x− µ)

)
(2.21)
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and

Qij = 0⇔ {i, j} ∈ E for all i 6= j (2.22)

The (undirected) graph G is used to represent the conditional independency property

of (2.17) in the GMRF. This graph representation is constituted by a set of nodes

V = {1, . . . , N} and a set of edges {i, j} that belong to E . If a pair of nodes {i, j}

belongs to E then there exists an (undirected) edge connecting both otherwise there

is not. Additionally a graph G is fully connected if {i, j} ∈ E for all i,j ∈ V with

i 6= j. Based on the conditional independence property we can derive a few important

Markov properties with the most useful and general being the following (for the others

see Chapter 2 in Rue and Held (2005))

Definition 4 (Global Markov property)

Define x to be a GMRF with respect to the graph G = (V , E). The Global Markov

property

xA ⊥ xB|xC (2.23)

for all disjoint sets A,B and C where C separates A and B with A and B not empty

sets.



40

Figure 2.1: Common Graph illustration of the Global Markov property. The blue
circles define the nodes of the subset A, the red ones the subset B while the black
ones constitute the subset C.

Conditional Independence implies no path from one subset to another, with a third

subset separating the first two. It also implies that several big blocks of elements

in the precision matrix only contain zeros. This zero pattern is fundamental: if

we know that some terms of the latent field x, encoded in Q, are zeros, then we

can figure out a similar zero pattern for related neighboring elements as well. In

this way, we consider a chain of operations that we do not need to apply since zero

values do not add any valuable information to the whole model structure, which saves

computational time. An example is given by time series models, which have large

sparsity structures in their precision matrix representations due to the conditional

independence property. Indeed, autoregressive models have severe sparse precision

matrices. An autoregressive model of order p has a (2p+1)-diagonal precision matrix

Q whose pattern allows fast computations in INLA.
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2.3.1 Cholesky Factorization

Sparse matrices allow more accessible storage and faster computations by using the

Cholesky Factorization algorithm. In most cases, we know that only O(N) of the N2

terms in Q are non-zero, and we can take advantage of its sparsity by exploiting the

respective zero pattern. The computations are faster on sparse matrices compared to

dense ones since the cost for factorizing a dense matrix is generally O(N3). A few

noteworthy examples that belong to this category are

• Temporal GMRF models, O(N) cost with Q sparse

• Spatial GMRF models, O(N3/2) cost with Q sparse

• Spatio-Temporal GMRF models, O(N2) cost with Q sparse

First we introduce the Cholesky Decomposition as follows

Definition 5 (Cholesky Triangle L)

If A is a N ×N symmetric positive definite (SPD) matrix, then there exists a unique

Cholesky Traingle L such that L is a lower triangular matrix and

A = LLT (2.24)

The computation of L involves N3/3 operations.

This factorization represents the basic step for solving linear systems like Ax = b or

AX = B or equivalently x = A−1b or X = A−1B. Forward and Backward loop

steps contribute to the following linear system of equations

Algorithm 1 Solving Ax = b with A > 0

Input: A cholesky factorization A = LLT with L being the Cholesky Triangle
Output: Return linear system solutions x

1: Solve Lv = b
2: Solve LTx = v
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Step 1 is called forward substitution and provides the vector solution v by using a

forward loop

vi =
1

Lii

(
bi −

i−1∑
j=1

Lijvj

)
for i = 1, . . . , N (2.25)

while Step 2 represents the back substitution and computes the vector solution x in

a backward loop

xi =
1

Lii

(
vi −

N∑
j=i+1

Ljixj

)
for i = N, . . . , 1 (2.26)

Both looping operations cost O(N2). We apply similar operations to the general case

AX = B as well. This version is used to deal with constrained GMRF where mean

and covariance structures change accordingly (a constrained GMRF note is given on

Chapter 3 for the joint Gaussian Approximation). We can also draw samples from a

GMRF structure denoted by x using (2.24) and the operations listed in (1)

Algorithm 2 Sampling x ∼ N(µ,Q−1)

Input: A cholesky factorization Q = LLT with L being the Cholesky Triangle
Output: Return x where x can be a GMRF

1: Sample z ∼ N(0, I)
2: Solve LTv = z
3: Compute x = µ+ v

If Q = LLT and z ∼ N(0, I), then x defined by LTx = z has covariance

Cov(x) = Cov(L−Tz) = (LLT )−1 = Q−1 (2.27)

We factorize the precision matrix and solve the linear system by sampling the process

backward. Through the resulting factorization, we also compute the determinant of

Q, which corresponds to the determinant of the lower triangular matrix squared.
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2.3.2 Numerical computations for sparse matrices

This section provides numerical results of precision matrix sparse computations in a

GMRF framework. We use numerical sparse linear algebra algorithms to achieve fast

factorizations at minimum cost. In Section 2.3.1 we summarised all these operations

in two tasks

1. Compute the Cholesky Factorization in (2.24) for sparse precision matrix Q

2. Employ the Forward and Backward algorithms in (1) to solve Lv = b and

LTx = z respectively

The second task is faster to accomplish than the first one as sparsity plays a significant

role. The first task hides no particular trick since we avail the zero pattern of the

precision matrixQ allowing the process to avoid computing the zero terms. Hence, we

decompose each precision term into sums of their respective Cholesky lower triangular

matrix as follows

Qij =

j∑
k=1

LikLjk, i ≥ j (2.28)

vi = Qij −
j−1∑
k=1

LikLjk, i ≥ j (2.29)

These equations compute all terms within the L structure. The solutions are

• L2
jj = vj and LijLjj = vi, i > j

• if we know {vi} for fixed j, then Ljj =
√
vj and Lij = vi√

vj
for i = j + 1, . . . , N

This approach shows how to get the jth column of the Cholesky Triangle L and,

therefore, the whole lower triangular matrix structure. This process represents the

first step of factorizing Q and take advantage of its sparsity structure as well. Still,
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it is not clear if this decomposition of Q into L matrices has a real benefit to our

computations. Thus, we consider a representation of L where its pattern determines

each GMRF term of x as follows

Definition 6 (Determination of x through L)

Consider the decomposition Q = LLT , then the solution of LTx = z where z ∼

N(0, I) is N(0,Q−1). Since L is lower triangular then

xN =
1

LNN
zN

xN−1 =
1

LN−1,N−1

(zN−1 − LN,N−1xN)

. . . (2.30)

Since zN is standard normal, the variance of a marginal distribution xN is equal to

the square inverse diagonal element LNN . A similar result holds for expression xN−1

if we condition on the future term xN of the process. By conditioning the previous

term xN−1 on the future term xN we are assuming xN to be constant. Doing so

brings interesting results: the conditional variance Var(xN−1|xN) is only related to

the diagonal terms of L while the conditional mean E(xN−1|xN) is strictly linked to

the off-diagonal elements LN,N−1xN . These results are summarised in the following

theorem

Theorem 3 (Alternative representation of a GMRF)

Define x to be a GMRF with respect to the labelled graph G, with mean µ = 0 and

precision matrix Q > 0. We denote L as the Cholesky triangle of Q. Then for i ∈ V,

we have
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E(xi|x(i+1):N) = − 1

Lii

N∑
j=i+1

Ljixj (2.31)

Var(xi|x(i+1):N) =
1

L2
ii

(2.32)

The expressions above define a sequential representation of a zero-mean GMRF back-

ward in time that can be seen as a backward autoregressive time series model given

by

xi|xi+1, . . . , xN ∼ N
(
− 1

Lii

N∑
j=i+1

Ljixj,
1

L2
ii

)
i = N, . . . , 1 (2.33)

The elements of L define conditional properties of the GMRF terms by conditioning

to the future. Indeed, the off-diagonal elements of L, conditioned on the higher-order

terms of the GMRF x, contribute to the conditional mean of the GMRF elements.

In contrast, the diagonal elements are the only ones that appear in the conditional

variance expression. If we have xi and xj conditional independent as in (2.17)

(assuming xj fixed), then we get Lji = 0 according to the conditional expressions

in the theorem above. Conditional independence is then a powerful property when

applied on the distribution of xi and the higher-order terms x(i+1):N since it determines

the zero pattern of L. Also, theorem 3 provides another insight when considering the

zero pattern of L

Theorem 4 (Zero Pattern of L)

Define x to be a GMRF with respect to G, with mean 0 and precision matrix Q > 0.

Again we denote L as the Cholesky triangle of Q and define for 1 ≤ i < j ≤ N the

set
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FU(i, j) = {i+ 1, . . . , j − 1, j + 1, . . . , N} (2.34)

which is the future of i except j, meaning that it contains all indexes higher than i

but not j. Then

xi ⊥ xj|xFU(i,j) ⇔ Lji = 0 (2.35)

Proof. To keep things simple, we assume µ = 0 and fix a pair of indexes {i, j} such

that 1 ≤ i < j ≤ N . By using Theorem 3 we have that

π(xi:N) ∝ exp
(
−1

2

N∑
k=i

L2
kk(xk +

1

Lkk

N∑
j=k+1

Ljkxj)
2
)

(2.36)

= exp
(
−1

2
xTi:NQ

(i:N)xi:N

)
(2.37)

where Q
(i:N)
ij = LiiLji. Finally Theorem 2 leads to

xi ⊥ xj|xFU(i,j) ⇔ LiiLji = 0 (2.38)

which is equivalent to the proof we need, that is, Lji = 0 is the acceptable result since

Lii > 0 as Q(i:N) > 0.

The implications of these results are important. If we know that Lji is zero, then

we do not need to compute it when factorizing the precision matrix Q, and this

saves computations. However, Theorem 4 does not provide any insight in detecting

which terms of the Cholesky triangle L are zero a priori as it only shows conditional

independence properties of the marginals xi from i up to N . The most natural idea

would be to compute L and check if Lji term is effectively zero, but this would not be
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very meaningful for our computational saving purposes. We need weaker properties

to make the whole approach feasible. The Global Markov property in (2.23) is

a natural candidate for this role. Theorem 4 describes numerical properties of the

matrix terms, while the Markov property gives information of the underlying graph

structure. There is no need to know the numerical values to apply these conditional

Markov properties because the results are strictly related to the graph structure.

We say here that for any identical graph structure, we get the same results while

the numerical values encoded in that structure are free to change without affecting

the computations. Through the following Corollaries, the Global Markov property

ensures a sufficient criterion for checking if Lji = 0 as stated by Theorem 4

Corollary 1 (Separate Future Set)

If FU(i, j) separates i < j in G, then Lji = 0.

Corollary 2 (Neighbors Representation)

If i ∼ j then FU(i, j) does not separate i < j.

The following two points summarise the whole methodology

1. use the Global Markov property to check if Lji = 0

2. only compute the non-zero terms in the Cholesky triangle L and then apply the

factorization Q = LLT

The Cholesky triangle L inherits the non-zero pattern of the precision matrix Q. We

can show an example with the following graph (many more examples and applications

appear on the GMRF book by Rue and Held (2005))
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has set of nodes V = {1, 2, 3, 4, 5} and set of edges E = {{1, 2}, {1, 4}, {2, 3}, {3, 4}, {4, 5}}.

The graph provides all the information to compute the corresponding Cholesky L tri-

angle

L =



L11

L21 L22

L31 L32 L33

L41 L42 L43 L44

L51 L52 L53 L54 L55


(2.39)

where the black cells denote non-zero terms while the red ones are unknown. Corollary

1 helps to fill in the information about these five red cells. By simply observing the

structure above, the future sets are FU(1, 3) = {2, 4, 5}, FU(2, 4) = {3, 5}, FU(1, 5) =

{2, 3, 4}, FU(2, 5) = {3, 4} and FU(3, 5) = {4}. The only one that does not satisfy

the Corollary is FU(2, 4). Therefore, L24 term is the only non-zero element while all

the others do not need to be computed as they are zero.

2.3.3 Band Matrices and Reordering

This section provides more insights into the numerical strategies used to speed up the

computations with sparse precision matrices. We introduce two main concepts: Band
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precision matrix structure and Permutations of the indexes. At the end of Section

2.3 we mentioned the precision matrix structure of an AR(p) time series model of

order p > 1. In this example, the matrix Q has a (2p+ 1)-diagonal band of non-zero

elements that makes the whole structure sparse. By construction its precision matrix

Q is referred to a Band Matrix with bandwidth of degree p. By using Theorem 4 and

Corollary 1 we can see that for k > p , the future set FU(i, i + k) separates nodes i

and i+ k so that the respective Cholesky triangle L has a lower triangular structure

with the same lower bandwidth of order p. The bandwidth does not change after the

factorization, and therefore we can state the following

Theorem 5 (Bandwidth of L)

Consider the precision matrix Q > 0 being a N ×N Band Matrix with bandwidth of

degree p. Then the Cholesky triangle L from the Cholesky factorization Q = LLT

has a (lower) bandwidth of degree p as well (a proof is given on Chapter 2 in Rue and

Held (2005)).

Figure 2.2: Graphical Band structures of the precision matrix Q and the Cholesky
triangle L involved in the Cholesky factorization for an AR(p) process with bandwidth
of degree p.

Here we use a modification of the Cholesky factorization applied on band matrices

where we only use entries that satisfy |i − j| ≤ p. For the autoregressive example,

the cost reduces to N(p2 + 3p) when N is much higher than p so that it is linear

in N compared to the usual N3/3 operations. A loop from the diagonal up to each
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column lets us take advantage of the band structure of Q which then extends to L.

Then we can run the loop on the diagonal within the p band. This band matrix

structure has a relevant computational advantage as it is easy to handle and enlarges

the sparsity structure of the matrix. Moreover, we can convert any sparse matrix into

a band matrix, as reported in Theorem 5, by applying a reordering of the vertices. In

practice, we construct an alternative representation of the same matrix by permuting

the indexes while retaining its original structure and properties. Then we apply a

permutation on these indexes and choose a new permuted matrix that most satisfies

our desired bandwidth conditions. A summary of the process is given below

Definition 7 (Reordered Band Matrix Q)

Consider to select one of the N ! possible permutations and define the corresponding

permutation matrix P such that iP
∗

= Pi where i = (1, . . . , N)T is the new order of

the vertices. Then we choose P , if possible, such that

QP ∗
= PQP T (2.40)

is a Band Matrix with permutation P ∗ of the indexes and a small bandwidth.

The new permuted precision matrix QP ∗
will have a more sparse structure. As it

appears from Definition 7, it is impossible to achieve an optimal permutation since

there are too many combinations to explore when N is high. We can avoid such

complexity by choosing a less optimal solution and solve Qµ = b for a given ordering

as follows

• Compute the new permuted problem bP
∗

= Pb where b is any new order of the

vertices

• Solve QP ∗
µP

∗
= bP

∗

• Map the solution back with µ = P TµP
∗
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Basically, we apply the factorization in the new permutation setting, obtain the right-

hand side of the permuted solution, and then compute the inverse permutation to

get the first solution back. Other ideas can be used to maximize the speed up of

this reordering scheme. For example, we can use the Nested dissection reordering

where a small set of nodes is removed from the original graph structure produc-

ing multiple smaller, not connected sub-graphs of similar sizes. On this reordering

task, two solvers are available in the GMRFLib C-library available in INLA: the Band

Cholesky Factorization (BCF) with LAPACK-routines DPBTRF and DTBSV for the

factorization and the forward/back-substitution, respectively, and the Gibbs-Poole-

Stockmeyer algorithm for bandwidth reduction. More, we have the Multifrontal Su-

pernodal Cholesky factorization (MSCF) implementation in the library TAUCS using

the nested dissection reordering from the library METIS. Proper reorderings of pre-

selected nodes and recursions on all the single graphs lead to significant reductions

in the factorization cost. In the spatial setting this cost is generally of the order

O(N3/2) with a fill-in cost of O(N log(N)). Existing software and built-in methods

in the sparse linear algebra field are constantly updated to provide the best compu-

tational performance for sparse matrices. In R there are packages like Matrix that

apply efficient embedding structures for sparse matrices while also choosing the best

reordering in the background.

2.4 INLA Shell: Laplace Approximation

Latent Gaussian Models (LGMs) in Section 2.2.1 and Gaussian Markov Random

Fields (GMRFs) in Section 2.3 are all we need to build empirically accurate Laplace

approximations for the posterior marginals using INLA. The deterministic nature

of the algorithm comes from the use of these approximations, which benefit from

previous assumptions on the latent structure using GMRF priors and sparse matrices.

The software does not rely on sampling from these GMRF structures but builds
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reliable marginal posterior approximations for each unknown parameter of the model

by using Laplace approximations. The Laplace mathematical technique sees its first

appearance in 1774 by Pierre-Simon Laplace, who used it to approximate integrals of

exponential functions of the form

∫ b

a

exp(mf(x)) dx (2.41)

where f(x) is a generic twice differentiable function and a and b can assume any

value. The method belongs to the field of asymptotic analysis, where we seek approx-

imate solutions to parametric settings where the parameter tends to an asymptotic

limit. The purpose is to analytically compute the integral of well-behaved unimodal

functions f(x) with strictly positive second-order derivative at the mode. Mostly, the

integrand turns out to be pretty peaked as the dimension m approaches infinity so

that a Taylor expansion can properly approximate it. In our statistical framework,

we see that expansions up to second-order are sufficient to approximate the integrand

of interest, which is close to a Gaussian density in most cases. The use of a Taylor

expansion up to order two has indeed some advantages

• the polynomial result behaves as a quadratic function, which recalls a Gaussian

distribution. By integrating it out, we would end up with just the normalization

constant of the Gaussian density;

• the expansion represents a natural idea as the main bulk of the function con-

centrates around the mode. This smoothly decreases as we approach its tails,

assuming no unusual pattern arises as we move far from the modal point. One

can see that the tail behavior of Skew Normal family densities shows limiting

Gaussian-like patterns as well (see Chapter 4);

• one can also argue that higher-order terms in the expansion would lead to more

accurate approximations, with the error quickly approaching zero as m grows.
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However, we would have more terms and cross-terms to evaluate therefore hav-

ing more costly computations. Laplace Approximations in INLA involve expan-

sions up to order two, which are perfectly accurate for posterior distributions

that are close to a Gaussian one most of the times. INLA can even push more

when this does not hold by stepping into a third-order expansion approximation

(see Section 2.5.3).

The resulting approximations get more accurate as the dimension m increases. There

are also some regularity conditions strictly related to the applied Taylor expansions,

which affect the approximation method, but we will not discuss them here. We

can now move on to some mathematical details using a generic example. The idea

revolves around computing the integral of a function f(x) by considering g(x) =

log(f(x)) and approximating the equivalent integral of exp(g(x)). Computing the

Laplace approximation for any integral
∫ b
a

exp(mf(x)) dx is straightforward as soon

as we apply a second-order Taylor expansion on exp(mf(x)) around its mode x∗

exp(mg(x)) ≈ exp
(
mg(x∗) +mg1(x∗)(x− x∗) +

m

2
g2(x∗)(x− x∗)2

)
≈ exp(mg(x∗)) exp

(m
2
g2(x∗)(x− x∗)2

)
(2.42)

where g1(·) and g2(·) represent the first and second derivative of g(x) respectively.

The first derivative g1(·) in the expansion vanishes since g1(x∗) = 0. By integrating

the expression in (2.42), we recognize the pattern of a Gaussian density with mean

x∗ and standard deviation σ = 1√
−mg2(x∗)

. Then the resulting integral is

∫
exp(mg(x)) dx ≈ exp(mg(x∗))

√
2πσ2 (2.43)

which is proportional to a Gaussian normalizing constant. As m→∞, the approxi-

mation gets more accurate, and the error drops to zero. This resulting error is relative
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and mostly comes from approximating the normalizing constant of the function. We

can describe its relative nature as

Ĩ(m)

I(m)
= 1 +O(m−1) (2.44)

where Ĩ(m) is the approximated integral and I(m) represents its true value in terms

of m observations, which are given. The relative error is of order O(m−1) which is
√
m

faster than simulation approaches like Monte Carlo (MC) or Markov Chain Monte

Carlo (MCMC) where, instead, the error is additive

Ĩ(m) = I(m) +O(m−
1
2 ) (2.45)

In general, the m notation used for the Monte Carlo sampling approaches would refer

to the samples used to construct the approximation and this can grow exponentially

large if more accuracy is required. From the first application of Laplace Approxima-

tion in Tierney and Kadane (1986), the authors compute more terms in the expansion

by reaching error terms of the order O(m−3). While this is more demanding and ac-

curate, it is not needed in our context since we do not observe any relevant additional

gain. INLA approximation strategies already ensure good trade-off between accuracy

and computational cost in order to achieve ideal results.

2.5 Bayesian Computing with INLA

The R-INLA software is a standalone R program that allows the user to compute

deterministic posterior marginal approximations for all parameters of a Latent Gaus-

sian Model. We can speed up computations by introducing Gaussian Markov Random

Fields with sparse precision matrices to model the latent field. Fast algorithms from

the sparse linear algebra theory lead to the desired performance. Marginal posterior

densities are approximated by Gaussian or Laplace Approximations depending on the
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chosen strategy and model complexity. The resulting approximations are empirically

correct, and we can write them as

π̃(θj|y) =

∫
π̃(θ|y) dθ−j, j = 1, . . . , |θ| (2.46)

π̃(xi|y) =

∫
π̃(xi|θ,y)π̃(θ|y) dθ, i = 1, . . . |x| (2.47)

where we assume the dimension |θ| to be less than 20 for a low computational burden

while |x| is equal to the entire model dimension N . Any Bayesian inference analysis

mainly requires computing the expressions above. First, we need to efficiently eval-

uate each single integral in the approximations π̃(θ|y) and π̃(xi|θ,y) as their cost

grows with increasing dimensions. As hinted by its acronym, INLA exploits nested

Laplace Approximations and numerical integration to accomplish this complex task.

The first approximation is applied on the posterior marginal of the hyperparameters

π̃(θ|y) in (2.46) which does not generally require heavy computations since the hy-

perparameter dimension is assumed to be small. The second approximation is the

Laplace Approximation on each conditional distribution π̃(xi|θ,y) in (2.47) which

is univariate. Finally, we combine both approximated results to get the posterior

marginals of the latent field. We can summarise the whole approach into three steps

• STEP 1: Compute the Laplace Approximation π̃(θ|y) through a grid exploration

scheme of its multi-dimensional density. We avoid representing this density

parametrically since it would be too costly. We employ explorative strategies to

sufficiently represent the multivariate result by computing relevant mass proba-

bility points of the hyperparameter space (details are outlined in Section 2.5.1).

Each univariate posterior marginal π̃(θj|y) for each j is obtained by interpola-

tion.

• STEP 2: Compute the second Laplace Approximation π̃(xi|θ,y) for each i by us-
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ing the pre-defined explorative scheme employed on Step 1 for π̃(θ|y). This part

can be quite tricky since it can be potentially slow. Three different strategies

are available in INLA to avoid these possible heavy computations based on the

problem complexity. This is outlined in Section 2.5.2.

• STEP 3: Combine Step 1 and Step 2 to finally get the univariate posterior marginals

π̃(xi|y) for each i through numerical integration.

One may think to apply the Laplace Approximation on both x and θ jointly instead

of relying on multiple, nested applications of the same technique. This idea is hardly

feasible since the resulting multivariate density would be far from a Gaussian and

involve many cross-correlated terms. For nearly Gaussian models with non-gaussian

data, the Laplace approximation always provides the most accurate results. If the

model is exactly Gaussian, we can instead use a Gaussian Approximation that grants

the most accurate and fast results.

2.5.1 Applying Gaussian and Laplace Approximation

To get the marginal approximations (2.46) we first need to compute an approxima-

tion for π(θ|y). Instead of trying to solve the integral, it is much better to apply

conditional relations and write

π(θ|y) =
π(x,θ|y)

π(x|θ,y)
∝ π(y|x,θ)π(x|θ)π(θ)

π(x|θ,y)
(2.48)

The numerator in (2.48) involves the term π(x,y|θ) which can deviate considerably

from a Gaussian density while the denominator is both unknown and not Gaussian

distributed. This suggests that we cannot directly approximate the overall density,

but instead, we need to rely on other methods. Hence we apply a joint approximation

in θ-dimensional space on the denominator term so that we have
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π̃(θ|y) ∝ π(x∗,θ|y)

π̃G(x∗|θ,y)

∣∣∣∣∣
x∗=µ(θ)

(2.49)

where π̃G(x∗|θ,y) is the Gaussian Approximation obtained by matching the mode

and curvature at the mode of the full density π(x|θ,y) after an iterative process (

see Appendix A for details). Then we obtain the Laplace approximation for (2.49)

by evaluating the ratio at the denominator mean µ(θ). Here we point out two obser-

vations:

• the approximation employs the mode instead of other summaries like mean or

median to avoid mismatches due to possible extreme observations

• the computed modal configurations strictly depend on the hyperparameter set

θ after an evaluation strategy is applied on π(θ|y)

The Gaussian Approximation appearing in the denominator of (2.49) simplifies the

Laplace Approximation problem. This is clear if we take a look at the nature of

π(x|y,θ). If we do not consider data y then we obtain the density π(x|θ) which is

Gaussian by GMRF construction. Therefore everything changes as soon as we plug

data into π(x|y,θ). Its resulting behaviour would be Gaussian if observations y are

Gaussian and nearly Gaussian if they are not. We can also ease the approximation

problem by using variance-stabilizing transformations for θ such as log or logit func-

tions for example. These transformations contribute to reduce skewness and get more

Gaussian-like posterior densities with lighter tails. The way the Gaussian Approxi-

mation is applied to the full conditional density π(x|y,θ) of a Latent Gaussian Model

is shown below
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π(x|y,θ) ∝ exp
(
−1

2
xTQ(θ)x+

n∑
i

log(π(yi|xi,θ))
)

≈ exp
(
−1

2
(x− µ(θ))T (Q(θ) + diag(c(θ)))(x− µ(θ))

)
≡ π̃G(x|y,θ)

(2.50)

where µ(θ) contains the location of the mode while c(θ) contains the negative second

derivative of the log-likelihood at the mode. The distribution π(x|y,θ) depends on

two quantities: the Gaussian structure of the latent field x and some log-likelihood

contribution from the data y. By definition of the Gaussian Approximation, if the

likelihood contribution term is Gaussian, we end up with a quadratic expression in

the expansion, and the approximation is exact. In a general non-Gaussian case,

the expansion error would propagate to the third-order or higher term representing

skewness or higher-order moments. However, the resulting approximation will not

be much far from the true probabilistic outcome since the error would be negligible.

The Gaussian prior on latent field x is a strong assumption for a Latent Gaussian

Model as it ensures accurate posterior approximations at negligible costs (see Chapter

4 for more details). Indeed, the prior considerably forces a Gaussian behavior onto

π(x|y,θ) even before the data are considered into the likelihood contribution part.

This term would mainly affect the mean and the marginal variance of π(x|y,θ) while

slightly touching the skewness. If we condition the expression (2.50) on data y, we

only get an additional term on the diagonal of the precision matrix Q, given by

the term diag(ci), which does not affect much the approximation and computations.

The sparsity structure, or similarly the underlying graph, remains unscathed, making

clear that the computational cost of considering data or not is the same. As a result,

the data contribution does not affect the sparsity structure of Q or any existing

dependency structure coming from the GMRF prior of the latent field. Moreover, the
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mixed product terms, not appearing in the likelihood contribution term, only come

from the GMRF prior, which improves the Gaussian Approximation accuracy.

2.5.2 Exploring the joint hyperparameter density

In this section we explain how INLA computes Laplace Approximations for the joint

posterior density π(θ|y) and its marginals. From the marginal expressions (2.46)

and (2.47) we see that π(θ|y) is the first density we need to approximate to obtain all

the target posterior marginals of a Latent Gaussian Model. Since this joint density is

assumed not to belong to a high dimensional space, we can approach its approximation

from a non-parametric perspective avoiding possible heavy computations derived from

a full parametric representation. Therefore we explore the approximation π̃(θ|y)

by evaluating a set of points {θk, k = 1, . . . , K} that can properly represent its

parameters range in the probability space. The number of points K determines the

level of accuracy we assume to recover the initial density and is generally small in

most cases. We can compute these points through a grid exploration scheme for the

entire dimension of θ by following a set of conditions. The whole scheme can be

summarised as follows

1. compute the approximation log{π̃(θ|y)} and locate its modal configuration θ∗

by applying a Quasi-Newton optimization strategy;

2. evaluate the Hessian matrix H > 0 at the mode θ∗ using finite difference

methods. Then define a new parameterization for the hyperparameters θ as

follows

Definition 8 (z-parameterization)

Define Σ = H−1 as the covariance matrix of θ and Σ = V ΛV T the eigende-

composition of Σ. The new z-parameterization is
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θ(z) = θ∗ + V Λ
1
2z (2.51)

where z are standardized and mutually orthogonal variables.

3. Compute the integration points {θk, k = 1, . . . , K} until the difference between

the new modal evaluation log{π̃(θ(0)|y)} and the respective point log{π̃(θk(z)|y)}

is below a certain threshold (a value of 6 is large enough to cover an acceptable

range);

4. Use the points θk to both evaluate the density log{π̃(θ|y)} and then compute

the respective marginals in (2.46) by interpolation to avoid computational

slowdowns.

These steps define the aforementioned grid exploration phase of the joint hyperpa-

rameter density. This strategy ensures accurate results but can be computationally

demanding since the cost grows exponentially with the dimension of θ. When this

happens, we can turn to other two explorative strategies

• EB : Empirical Bayes. If the variability amongst the hyperparameters θ does not

affect the posterior information of the latent field x and |θ| is large, then we

can plug in the mode of π̃(θ|y) and do the integration. This chice avoids

heavy computations due to the number of hyperparameters in the model while

ensuring good level of accuracy in the results;

• CCD: Central Composite Design. This is the explorative scheme used by default

in INLA when |θ| > 2. For |θ| ≤ 2 the grid exploration strategy is employed

by default. This scheme considerably reduces the computational cost by setting

the integration problem into a design problem which exploits a response surface

approach. Such method allows to compute a considerably lower amount of
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integration points θk that can still recover the target approximation (see Rue

et al. (2009) and Gómez Rubio (2020) for more details on these strategies).

The z-parameterization provides a useful transposition of the θ-space into a Gaus-

sian one therefore simplifying the exploration of log{π̃(θ|y)} by detecting its highest

bulk of probability around the mode. We define a specific threshold around the

mode θ∗ and then compute a set of points in the new standardized Gaussian z-space

with H−1 = I which well represent the entire density. The initial integration points

{θk, k = 1, . . . , K} are recovered by reverting back to the θ-space using the relation

in (2.51). Each posterior marginal approximation π̃(θj|y) in formula (2.46) is then

computed by interpolation using the integration points θk. More precisely, we can

fit a spline using the respective coordinates {θk(j), log(π̃(θk(j)|y))} with relative to

the points θk(j) of the jth marginal and then normalize the density (see Martino and

Riebler (2019) for a detailed example). Details on how to build an efficient interpo-

lation approach can be found in Martins et al. (2013). By default INLA exploits a

numerical integration free algorithm for obtaining the posterior marginals of the hy-

perparameters. This method takes advantage of the pre-computed integration points

on the approximation π̃(θk(j)|y) and speed up the computations by also correcting for

skewness when |θ| is high. INLA also allows the user to implement his own grid ex-

ploration scheme for the hyperparameter space but this requires advanced awareness

from the user perspective.

2.5.3 Approximating the latent field marginals

Since we have now obtained the integration points θk from the grid exploration scheme

in Section 2.5.2, we can finally compute the remaining posterior approximations of the

latent field in (2.47). These marginal approximations require a nested combination

of Laplace Approximations of both the marginals π(θj|y) for j = 1, . . . , |θ| and the

full conditionals π(xi|y,θ) for i = 1, . . . , |x|. For the Laplace Approximation of these
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full conditional densities, we can follow a similar strategy used for (2.49). However,

this hides some tricky issues since it involves multiple factorizations of the precision

matrix structureQ(θ), which depends on the hyperparameter set. A blind brute force

approach can lead to slow computations since the precision matrix dimensionality can

grow large, in the order of 103, 104, or more. Indeed its dimension depends on both

data and latent parameter dimensions. For example, if we assume n observations and

p parameters, then the dimension would be n + p with both n and p being possibly

really large. In this final section, we outline the three main available strategies in

INLA for efficiently tackling this problem:

• Gaussian Approximation (GA). By exploiting the information from the joint

Gaussian approximation π̃G(x|y,θ) we can compute each marginal approxima-

tion π̃(xi|y,θ) for each i through a Gaussian distribution with marginal mean

µi(θ) and marginal variance σ2
i (θ). This task requires the computations of the

respective marginal means and variances. The Gaussian Approximation is rec-

ognized to be the most accurate and fast among the available strategies except

it does not correct for location and skewness.

• Laplace Approximation (LA). Similarly to the approximation in (2.49), we

can again apply the Laplace approximation to π(xi|y,θ) to get

π̃LA(xi|y,θ) ∝ π(x∗,θ|y)

π̃G(x∗−i|xi,y,θ)

∣∣∣
x∗
−i=µ−i(xi,θ)

(2.52)

with π̃G(x∗−i|xi,θ,y) being the Gaussian Approximation with modal config-

uration µ−i(xi,θ). The Gaussian Approximation on the lower-dimensional

density π(x−i|xi,y,θ) provides accurate results as they are well behaved and

nearly Gaussian. Although the Laplace Approximation results are more accu-

rate in more skewed settings than its Gaussian counterpart, it still suffers a

not negligible slowdown in the computations as it requires N factorizations of
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(N−1)×(N−1) matrices. While it does resolve the computational issue related

to the factorizations of Q(θ) for each integration point θk, it still suffers from

the many optimization steps to locate the mode of each density π(x−i|xi,y,θ).

We can save computations by computing an approximated mode using the con-

ditional mean in terms of π̃G(x|θ,y) and then only consider the latent terms

that actively provide a contribution to xi. Some pre-defined criteria lead to a

series of points used to approximate the outcomes with a Gaussian density and

a cubic spline (details on Rue et al. (2009)). The resulting approximation would

be of the form

π̃LA(xi|y,θ) ∝ N(µi(θ), σi(θ)) exp(S(xi)) (2.53)

where S(xi) is a cubic spline involving polynomials of third order degree. The

spline applies an interpolation of these points from the marginal latent variable

to the log density difference between the Laplace Approximation and respective

Gaussian Approximation. While this strategy is more expensive, this point by

point spline interpolation corrects the Gaussian Approximation when this one

is far from being accurate.

• Simplified Laplace Approximation (SLA). This strategy reduces the com-

putational burden of the Laplace approximation strategy by keeping the accu-

racy as high as possible. The idea is to apply a Taylor expansion up to third

order of π̃LA(xi|y,θ) around the point xi = µi(θ) and use the resulting com-

ponents of the expansion to correct π̃G(xi|y,θ) for location and skewness. The

first and second order term exactly give π̃G(xi|y,θ) while the third order term

provides a correction for skewness. The resulting approximation has the form

π̃SLA(xi|y,θ) ≈ exp
(
−1

2
x2
i + bi(θ)xi +

1

6
ci(θ)x3

i )
)

(2.54)
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where (bi(θ), ci(θ)) induce more marginal corrections to mean and skewness.

This expression does not define a proper density function since the third-order

term is unbounded, but it still can be used to fit a Skew-Normal density (see

Azzalini and Capitanio (2018)). In general terms, we define S ∼ SN(ξ, ω, α)

with probability density function

f(s; ξ, ω, α) =
2

ω
φ
(s− ξ

ω

)
Φ
(
α
s− ξ
ω

)
(2.55)

with α being the skewness parameter to account for skewness in the distribution.

If α = 0 then the distribution degenerates into a N(ξ, ω2). In Chapter 4 we show

how to construct the approximation (2.54) by matching the first and third-order

terms bi(θ) and ci(θ) to the Skew-Normal moments and then propose a possible

extension using an Extended Skew Normal distribution.

The approximation π̃SLA(xi|y,θ) represents the default strategy in INLA since it of-

fers the best deal between speed and accuracy. The other two strategies may provide

better results if the posteriors are closely Gaussian or more accuracy is required. The

computational complexity of these strategies is mainly related to multiple factoriza-

tions of the precision matrix of the latent field and linear system solutions while also

taking into account the dimension of θ. In a spatial setting, the cost for computing

each marginal π̃SLA(xi|y,θ) would be O(N log(N)). Therefore the total cost for com-

puting all N marginals would be O(N2 log(N)) for each configuration point in the θ

space. Now that the full conditional approximations are available, we can compute

the posterior marginals in (2.47) via numerical integration as

π̃(xi|y) ≈
K∑
k=1

π̃(xi|y,θk)π̃(θk|y)∆k (2.56)

where π̃(xi|y,θk) is obtained though one of the previous strategy (GA, LA or SLA)

and π̃(θk|y) is computed with one of the explorative scheme described in Section
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2.5.2. In a spatial setting, the cost for computing all posterior marginal above would

be exp(|θ|)×O(N2 log(N)). Depending on the likelihood nature, the equation follows

a mixture of Gaussian or Skew-Normal densities with integration weights π̃(θk|y)∆k.

A similar structure will come back in Chapter 3 when discussing joint posterior density

approximations for Latent Gaussian Models. The components ∆k are area weights

from the grid used for exploring π̃(θ|y). These are equal to one since the grid structure

is often constructed in an equidistant way to ease the density exploration but they

can assume different values if the grid is more irregular. The entire source of the

approximation error in (2.56) comes from the Laplace Approximations and the grid

exploration scheme. If π(x|y,θk) is Gaussian then each π(xi|y) can be computed

exactly for each integration point θk with the only source of error coming from the

grid exploration phase.
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Chapter 3

Joint Posterior Adjusted Inference for Latent Gaussian

Models

The computational aspect of solving complex Bayesian problems plays a significant

role in inferential analysis. Most strategies, such as Markov Chain Monte Carlo

(MCMC) methods, rely on sampling from proposal distributions to retrieve the un-

derlying truth but can be heavily slow in more complex settings. The Integrated

Nested Laplace Approximation (INLA, Rue et al. (2009)) approach, whose method-

ology is outlined in Chapter 2, can achieve the same or better Monte Carlo accuracy

by constructing marginal deterministic approximations for the posterior marginals

of a Latent Gaussian Model. We can extend this methodology to a more accurate

joint inference analysis by defining a new class of joint approximations. Section 3.1

introduces the class of Skew Gaussian Copula (SGC) joint approximations to the la-

tent field components, where we combine a Gaussian Copula structure with marginal

transformations that add location and skewness adjustments. Section 3.2 exploits a

mixture representation of the new class and its moments to compute deterministic

posterior approximations for linear combinations in a subset of the latent field. These

approximations are fast to compute as they follow exact parametric assumptions. In

Section 3.3 the same mixture representation of Skew Gaussian Copula (SGC) joint

densities contribute to achieving an approximation for the full joint posterior density

of a Latent Gaussian Model by employing an exact Monte Carlo sampling approach

on the hyperparameter space. All these new approximations are then tested and com-

pared with the accurate MCMC results obtained in JAGS (Plummer et al. (2003))
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by using highly skewed simulated examples from Poisson and Binomial hierarchical

models. We summarise the main findings of the simulations in Section 3.4. This

chapter is based on the respective submitted paper in Chiuchiolo et al. (2021).

3.1 Class of Skew Gaussian Copula approximations

Marginal posterior inference for a Latent Gaussian Model (LGM) is easy to obtain in

INLA using accurate approximations. On the contrary, joint inference for the same

model is less straightforward as the density is unknown, and an accurate approx-

imation is hard to achieve. This section introduces how we can approach a joint

approximation by first extending the Gaussian Approximation to a more accurate

version. We recall that the joint posterior density (2.4) is derived from a hierarchical

mathematical formulation of the multivariate latent field x with dimension N and a

set of hyperparameters θ with dimension p. The posterior marginals for the latent

field x are obtained as follows

π(x|y) =

∫
π(x,θ|y) dθ

=

∫
π(x|θ,y)π(θ|y) dθ (3.1)

We now know that we can compute approximations of these marginals by using a

nested Laplace scheme and then integrating out the uncertainty coming from the

hyperparameter set θ (as described in Section 2.5.3). Three are the main approxima-

tion strategies we can use in INLA: the Gaussian Approximation (GA), the Laplace

approximation (LA) and the Simplified Laplace approximation (SLA). The Gaussian

Approximation results to be the most attractive when the likelihood contribution is

Gaussian or close to that shape. This thesis chapter will greatly focus on the joint

Gaussian Approximation onto the full conditional density of the latent field π(x|θ,y)
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which we can use to construct accurate joint posterior approximation for the joint

density in (2.4) with marginal skewness adjustments. Appendix A provides details on

the Gaussian Approximation, which constructs a multivariate Gaussian density with

mean and correlation structure inherited by the GMRF prior information assumed on

the latent field (see Chapter 2 for a GMRF definition). However, the joint Gaussian

Approximation π̃G(x|θ,y) lacks accuracy in more extreme settings where Gaussian

assumptions do not properly hold. Here we can introduce a new class of joint approx-

imations that encodes corrections for location and skewness while retaining Gaussian

Approximation properties in its multivariate definition. This class can handle more

extreme outcomes when the deviation from a Gaussian gets larger.

3.1.1 General Formulation

While considering the Gaussian Approximation on the latent field x, we define a

set of new random variables x̃ = h(x) = (h1(x1), . . . , hN(xN)) with well-defined

transformations h(x) and envelope the entire joint object into a Gaussian Copula

structure. A copula represents a mathematical object which links a joint multivari-

ate cumulative distribution function to its univariate marginals, which are uniform

by construction. This mathematical formulation helps to properly model the depen-

dency relation amongst a sequence of random variables. More precisely, Sklar (1959)

theorem (see Nelsen (1999)) states that any joint cumulative density function H(·)

having marginals G1(·), . . . , GN(·) defines a copula C on generic random variables

X1, . . . , XN such that

H(X1, X2, . . . , XN) = C(G1(X1), G2(X2) . . . , GN(XN))

where C is unique as soon as all marginals {Gi}Ni=1 are continuous. If we define new

random variables U1, . . . , UN such that each Ui = G(Xi), ∀i then we can write the

copula as
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C(U1, U2, . . . , UN) = H(G−1
1 (U1), G−1

2 (U2) . . . , G−1
N (UN))

by applying the Probability Integral Transform theorem (PIT) to each random vari-

able Ui assuming each marginal inverse cumulative distribution function G−1
i (·) exists.

This method allows to flexibly model a joint distribution with any well defined and

continuous marginal distributions {Gi}Ni=1 and copula C and generate samples from

random variables having these marginals (see Section 3.1.4 on a Gaussian Copula

construction for our case). In our framework, the use of a Gaussian Copula entirely

matches our needs of constructing an improved version of the Gaussian Approxima-

tion. As a result, we can write the new class of approximations as follows

π̃SGC(x̃|θ,y) ∝ π̃G(h−1(x̃)|θ,y)|Jx̃|

∝ |Jx̃| exp(−1

2
[h−1(x̃)− µ∗(θ)]TQ∗(θ)[h−1(x̃)− µ∗(θ)] (3.2)

where (µ∗(θ),Q∗(θ)) are posterior summaries from the respective Gaussian approxi-

mation and Jx̃ is the Jacobian result from applying the transformation h(·). We know

that µ∗(θ) comes from matching the mode of π(x|θ,y) andQ∗(θ) = Q(θ)+diag[c(θ)]

where Q(θ) is the original precision matrix of the latent field while c(θ) contains the

negative second derivative of the log-likelihood. Depending on the choice of the set of

functions h(·), the multivariate object in (3.2) can assume different shapes. The re-

sulting joint density inherits the Gaussian Approximation structure while also adding

corrections for skewness to its marginals. Such copula construction retains the de-

pendency structure amongst the latent field terms and then constructs more skewed

marginals depending on the chosen transformation. Based on this construction, we

name this class of joint approximations Skew Gaussian copula (SGC). Not only we

can retrieve joint Gaussian Approximations from this class, but we can freely apply
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a transformation h(·) that enables more accurate marginals in terms of location and

skewness adjustments. These properties improve the existing limits of the Gaussian

Approximation towards more extreme settings without affecting the latent field struc-

ture of the model. The choice of the transformation becomes a key point for defining

an accurate class of joint densities with desirable properties for the approximation.

There are indeed settings where Gaussian modeling assumptions can be poor due

to lack of observations and information. For example, when considering count data

with unbalanced low counts or a low number of successes in a binomial experiment.

These observed datasets can lead to heavily skewed outcomes that must be properly

accounted when doing inference.

3.1.2 Gaussian Approximation and Poisson Likelihood ex-

ample

As an example, we consider Poisson observations y1, . . . , yn with means λ1, . . . , λn,

a single covariate ξ = (ξ1, . . . , ξn) and linear predictors ηi = log λi = β0 + β1ξi, ∀i

with (β0, β1) being the coefficients for the intercept and covariate respectively. Based

on INLA methodology, the latent field is x = (η1, . . . , ηn, β0, β1) with x ∼ N(0,Q)

where Q is a symmetric precision matrix with dimension (n + 2) × (n + 2). In this

case we have π(θ|y) ∝ 1 since no hyperparameter is assumed in the model structure

and

π(x|y) ∝ π(y|x)π(x)

∝ exp
(
−1

2
xTQx+

n∑
i=1

[yiηi − exp(ηi)]
)

(3.3)

which represents the joint posterior density of the model as it is. Accordingly, the

precision matrix Q is
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Q =


τεI τεIξ τεI1

τβ0 + τε1T1 τεξ
T1

τβ1 + τεξ
Tξ

 (3.4)

where I is a n × n identity matrix, 1 = (1, 1, . . . , 1)T a (n + 2)-dimensional unit

vector and (τβ0 , τβ1) are the precisions of the fixed parameters (β0, β1). The precision

τε that appears in the precision matrix structure (3.4) is related to a tiny Gaussian

noise ε added to each linear predictor ηi to avoid singularity issues for Q−1 (more

insights in Rue et al. (2017) and Section 2.2.3). By applying the approach outlined

in Appendix A, we construct a Gaussian Approximation to the joint density in (3.3)

which is denoted by π̃G(x|y). This approximation defines a multivariate Gaussian

density N(x∗,Q∗) where x∗ = (x∗1, . . . , x
∗
n, x

∗
n+1, x

∗
n+2) is the mean summary resulting

from matching the modal configuration of π(x|y) while Q∗ = Q+ diag(c) with

c =



− ∂2

∂2η1
[
∑n

i=1 yiηi − exp(ηi)]|η1=x∗1

...

− ∂2

∂2ηn
[
∑n

i=1 yiηi − exp(ηi)]|ηn=x∗n

− ∂2

∂2β0
[
∑n

i=1 yi(β0 + β1ξi)− exp(β0 + β1ξi)]|β0=x∗n+1

− ∂2

∂2β1
[
∑n

i=1 yi(β0 + β1ξi)− exp(β0 + β1ξi)]|β1=x∗n+2


, (3.5)

which contains all the negative second derivatives of the log-likelihood in (3.3) eval-

uated at the modal points within x∗ with respect to each latent parameter xi. If we

consider a setting with low count data modeled by a Poisson distribution, we may

find the Gaussian Approximation not as accurate as we need. Therefore, we can ex-

ploit the Skew Gaussian Copula densities introduced in the previous section to deal

with such applications. Since we expect the outcomes of the Poisson model to be

skewed, we can choose a transformation h(·) that adds more skewness adjustments

on the marginals so that the joint approximation can properly recover the true un-
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derlined posterior density. Skew Normal family distributions represent an efficient,

natural choice. Through this class, we can still retain the dependency structure en-

coded in Q due to the use of the Gaussian copula. While Section 2.5 shows that

marginal Bayesian posterior analysis is an easy and efficient hack in INLA, the same

methodology may not be enough in more extreme contexts. When the hyperparam-

eter information is strongly correlated to one or more parameters or is intrinsically

part of the underlying likelihood model structure, we might need to turn to a joint

posterior inference and use different tools such as the aforementioned Skew Gaussian

Copula.

3.1.3 Gaussian Approximation and linear constraints

As described in Section 2.5, the Gaussian Approximation is fundamental to approxi-

mate the hyperparameter posterior marginal π(θ|y) with a Laplace Approximation.

Moreover, the Gaussian Approximation is also part of the available INLA strategies

to get fast and accurate marginal deterministic results. From (2.4) we see that the

full conditional we need to approximate is

π(x|θ,y) ∝ exp
(
−1

2
xTQ(θ)x+

n∑
i=1

log π(yi|xi,θ)
)

(3.6)

with usual LGM assumptions on each likelihood point π(yi|xi,θ) and Gaussian latent

field x with sparse precision matrix Q. A simple but powerful trick to approximate

such densities is to collect and evaluate the available information such that the re-

sulting density resembles a Gaussian distribution. In this way, we get the respective

Gaussian Approximation for (3.6) as

π̃G(x|y,θ) = (2π)−
N
2 |Q∗(θ)|

1
2 exp

(
−1

2
(x− µ(θ))TQ∗(θ)(x− µ(θ))

)
(3.7)
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which corresponds to a multivariate Gaussian density with mean µ(θ) and precision

matrix Q∗(θ) with Q∗(θ) = Q(θ) + diag(c(θ)) where c(θ) contains the negative

second derivatives of the log density evaluated at the mode of (3.6). Appendix A

provides some details about the iterative Newton Raphson process to obtain these

summaries. We can also construct a Gaussian Approximation that corrects for linear

constraints of the form Cx = e with C and e being a N × k matrix with rank k

and a real vector respectively. For this setting, the previous mean summary of the

approximation is replaced in the iterative process with the expected value of a sample

drawn from a constrained Gaussian Markov Random Field (see Section 2.3). The new

corrected mean is obtained by using the formula

xc = x−Q−1CT (CQ−1CT )−1(Cx− e), (3.8)

where x denotes an unconstrained GMRF sample. The expected value of the for-

mula (3.8) is especially useful to approximate the conditional mode used for the

Laplace Approximation strategy in Chapter 2. Linear constraints account for proper

identifiability of the parameters and must be carefully encoded in the precision struc-

ture when constructing a joint posterior approximation to π(x|θ,y). Blind use of

the Gaussian approximation can lead to inaccuracies in cases where the likelihood

assumptions are far from being Gaussian (Binomial or Poisson data, for example).

Here the approximations can fail in recovering the true result. Ferkingstad and Rue

(2015) propose and achieve more corrected approximations by constructing a more

accurate Gaussian Approximation with marginal location and skewness adjustments.

3.1.4 Mathematical derivation of a Skew Gaussian Copula

(SGC)

In this section, we finally describe how to construct a Skew Gaussian Copula joint

density approximation by defining a proper Gaussian Copula for the joint Gaussian
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Approximation density and a well defined transformation h(·). From the Gaussian

approximation in (3.7), we construct a new class of joint approximation densities

by assuming a new latent random vector x̃ and a set of marginal transformations

x̃ = h(x) applied on the original latent field. Both the transformation and the Gaus-

sian Copula contribute to construct the Skew Gaussian Copula joint approximation

density. The copula retains the same dependency structure encoded in the precision

matrix Q of the original latent field x according to its assumed GMRF formula-

tion. The marginal transformations in h(x) are flexible as they can borrow features

from the more accurate posterior marginal approximations computed in INLA. The

transformation choice is parametric and defines one and only one joint approximation

within the Skew Gaussian Copula class. The class then sees a new defined random

latent vector x̃ = (h1(x1), . . . , hN(xN)) through the vector function h(·). Here we

consider x̃ ∼ F where F = (F1, . . . , Fi, . . . , FN) is a vector of cumulative distribution

functions assumed for the Gaussian Copula construction. Since we want to encode

skewness into the new joint approximation through the copula, we choose each Fi to

be from a Skew Normal density (2.55). Such choice is particularly appealing with

the way INLA achieves marginal densities through its Simplified Laplace strategy

by using Skew Normal approximations. Accordingly, the standardized latent field is

z̃ = x̃−µ̃(θ)
σ̃(θ)

with z̃ ∼ F̃ such that F̃ is the vector of cumulative distribution functions

of standard Skew Normal random variables with improved mean µ̃(θ) and standard

deviation σ̃(θ). Thus, we can now apply the Gaussian Copula and get explicit ex-

pressions for the set of transformations h(·), to get a new joint approximation density

to (3.7). We summarise the methodology step by step as follows:

1. Consider z = x−µ(θ)
σ(θ)

to be the original standardized latent variables with respect

to the Gaussian approximation π̃G(x|θ,y) with respective posterior summaries

(µ(θ),σ(θ)).

2. Construct z̃ = h(z) = F̃
−1

(Φ(z)) with Φ = (Φ1, . . . ,Φi, . . . ,ΦN) being the
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vector of standard cumulative Gaussian distribution functions where Φi =

Φ, ∀i by definition. Note that the joint cumulative distribution function of

Φ1(z1), . . . ,Φi(zi), . . . ,ΦN(zN) is exactly the Gaussian Copula.

3. Thus Φ(zi) ∼ U(0, 1), ∀i by using the Probability Integral Transform (PIT)

theorem while its inverse application leads to z̃ ∼ F̃ meaning that

x̃ = σ̃(θ)h(z) + µ̃(θ)

= σ̃(θ)F̃
−1

(Φ(z)) + µ̃(θ) (3.9)

where x̃ ∼ F as per prior assumption.

The use of Skew Normal marginals in F̃ allows us to borrow the more accurate

properties from the Simplified Laplace strategy and encode them into the resulting

Skew Gaussian Copula joint approximation. Its marginal properties would then be

adjusted for skewness, extending the method’s modeling applicability. Furthermore,

we get an explicit expression for the vector transformation h(·) as

h(z) = F̃
−1
[
Φ
(x− µ(θ)

σ(θ)

)]
(3.10)

and its inverse

z = h−1(z̃) = Φ−1
[
F̃
( x̃− µ̃(θ)

σ̃(θ)

)]
(3.11)

by using the change of variable theorem. Since h(·) is now parameterically known,

we can write down a more precise Skew Gaussian Copula density of (3.2) with respect

to the new latent field x̃ as follows
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π̃SGC(x̃|θ,y) = π̃G(g(x̃)|θ,y)|Jx|

= (2π)−
N
2 |Q∗(θ)|

1
2 exp

[
−1

2
(g(x̃)− µ(θ))TQ∗(θ)(g(x̃)− µ(θ))

]
|Jx|

(3.12)

with g(x̃) = h−1
(
x̃−µ̃(θ)
σ̃(θ)

)
σ(θ) + µ(θ) and |Jx| being the Jacobian determinant of

the applied vectorial transformation,

Jx =
[ ∂x
∂x̃1

, . . . ,
∂x

∂x̃N

]
=



∂x1
∂x̃1

0 . . . 0

0 ∂x2
∂x̃2

0
...

... 0
. . . 0

0 . . . 0 ∂xN
∂x̃N


(3.13)

with |Jx| =
∣∣∣∏i

∂xi
∂x̃i

∣∣∣ where ∂xi
∂x̃i
≥ 0, ∀i. Next we compute each differential component

of Jx by differentiating the inverse transformation in (3.11) with respect to each latent

component x̃i

∂xi
∂x̃i

=
f̃i

(
x̃i−µ̃i(θ)
σ̃i(θ)

)
φ
(

Φ−1
[
F̃i

(
x̃i−µ̃i(θ)
σ̃i(θ)

)]) (3.14)

and derive a full density representation of the Skew Gaussian Copula by plugging

(3.12) and (3.14) into the same expression

π̃SGC(x̃|θ,y) = (2π)−
N
2 |Q∗(θ)|

1
2 exp

[
−1

2
[t(x̃)]TQ∗(θ)[t(x̃)]

] N∏
i=1

δi(x̃i) (3.15)

with t(x̃) = Φ−1
[
F̃
(
x̃−µ̃(θ)
σ̃(θ)

)]
σ(θ) and δi(x̃i) =

f̃i

(
x̃i−µ̃i(θ)
σ̃i(θ)

)
φ

(
Φ−1

[
F̃i

(
x̃i−µ̃i(θ)
σ̃i(θ)

)]) , ∀i. By choice

of the vector transformation h(·), the joint density in (3.15) deviates from the Gaus-
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sian pattern of the Gaussian Approximation while maintaining the same precision

structure in Q∗. The Skew Normal assumption propagates to the marginal transfor-

mations h(·) in (3.9) leading to a general form of the Skew Gaussian Copula joint

approximation. Although other choices are possible, this representation appears to

be the most coherent and efficient towards INLA methodology. As an example, if

skewness is negligible, then we can assume an identity relation of the form z̃ = z and

the expression in (3.9) simplifies into

x̃ = σ̃(θ)z + µ̃(θ) = x− µ(θ) + µ̃(θ), (3.16)

which applies location adjustments by shifting the original mean of the Gaussian ap-

proximation by the improved mean term µ̃(θ) of the Simplified Laplace marginals

computed in INLA. We also point out that σ(θ) and σ̃(θ) are the same by construc-

tion of both the Gaussian and Simplified Laplace approximations. Correspondingly

the density in (3.12) degenerates into a Gaussian Approximation with improved mean

µ̃(θ) and precision matrix Q∗(θ)

π̃IG(x|θ,y) = (2π)−
N
2 |Q∗(θ)|

1
2 exp

[
−1

2
(x− µ̃(θ))TQ∗(θ)(x− µ̃(θ))

]
(3.17)

which we denote as Improved Gaussian Approximation (IG). Both the Gaussian Ap-

proximation and its Improved version in (3.17) belong to the Skew Gaussian Copula

class. The improved case is straightforward while the standard one is obtained by

assuming the set of cumulative marginals F for x̃ to be the ones from the Gaussian

approximation marginals π̃G(xi|θ,y), ∀i. Since a proper parametric density form

is available, we can measure the entity of the corrections added to the new joint

approximation compared to its Gaussian counterpart.
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3.1.5 Skewness Correction Differential on the log-joint ap-

proximation

From (3.7) we know that the joint density of the Gaussian Approximation at the

denominator evaluated at its mean point x = µ(θ) is

log π̃G(x|θ,y)
∣∣∣
x=µ(θ)

=
1

2
|Q∗(θ)| − N

2
log(2π) (3.18)

To measure the amount of skewness correction being added to the new transforma-

tion on π̃G(x|θ,y), we must evaluate the new class of joint approximations defined

by (3.15) at the same mean point of the new latent random field x̃. Similarly to

(3.15),

log π̃SGC(x̃|θ,y)
∣∣∣
x̃=µ(θ)

=
1

2
log |Q∗(θ)|−1

2
[t(µ(θ))]TQ∗(θ)[[t(µ(θ))]]+

N∑
i=1

log δi(µi(θ))

(3.19)

Through the evaluated quantities in (3.18) and (3.19), we can account for the differ-

ential correction when using the new transformed joint density,

∆x,x̃ =
[
log π̃G(x|θ,y)− log π̃SGC(x̃|θ,y)

]∣∣∣
(x,x̃)=µ(θ)

=
1

2
[t(µ(θ))]TQ∗(θ)[[t(µ(θ))]]−

N∑
i=1

log δi(µi(θ)) (3.20)

Here we notice that the expression in (3.20) degenerates into

∆x,x̃ =
1

2
(µ(θ)− µ̃(θ))TQ(θ)(µ(θ)− µ̃(θ)) (3.21)

if we consider the Skew Gaussian Copula with only mean corrected marginals in (3.17).

Again, this particular case of the class happens when the transformations in h(·) are
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assumed to be an identity. The differential of the applied skewness correction in (3.21)

provides an indicator of the mass of probability adjustment when we employ a Skew

Gaussian Copula with Skew Normal marginals.

3.2 Posterior Approximations for Linear Combinations

From Section 3.1 we know that the Skew Gaussian Copula class provides a family

of joint density approximations for densities of the form π(x|y,θ) within a Latent

Gaussian Model framework. We can also exploit the general form of this class with

marginal skewness correction to get approximations for posterior marginals and linear

combinations in a subset of the latent field. Unlike the Gaussian Approximation,

the density of the new multivariate class of joint approximations in (3.15) does not

have a known probabilistic form, but we can still compute its summaries through

its Gaussian Copula construction. By computing the first three order moments of

a mixture representation of Skew Gaussian Copula densities, we can obtain all the

information we need to approximate the target posterior marginals for the latent

field subset of interest by exploiting Skew Normal distributions. After manipulating

and matching the moments with the respective Skew Normal ones, we get results

that still retain structure and properties of the Skew Gaussian Copula class with

corresponding Skew Normal marginal approximations. Section 3.2.1 focuses on the

construction of such surrogate Skew Gaussian Copula from its mixture representation

to approximate posterior marginal densities within a subset of the latent field x. From

this straightforward application, Section 3.2.2 extends the methodology to additive

linear combinations Ax with similar assumptions.

3.2.1 Latent Field marginal approximations in a subset

Consider a subset of the latent field x defined by a set of indexes S = {i|i ∈

{1, . . . , N}, |x| = N}. We aim to compute an approximation for π(xS|y) whose
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density can be further decomposed into

π(xS|y) =

∫
π(xS|θ,y)π(θ|y) dθ (3.22)

Similarly to the Laplace Approximation strategy in INLA (see Section 2.5.3), we can

construct an approximation for (3.22) by exploiting a mixture representation of the

Skew Gaussian Copula class of joint densities introduced in Section 3.1

π̃(xS|y) ≈
K∑
k=1

π̃SGC(xS|θk,y)wk (3.23)

where wk = π̃(θk|y)∆k with normalised weights as
∑K

k=1 wk = 1. The joint densities

in expression (3.23) are the full conditional Skew Gaussian Copula approximations

with corresponding density in (3.15). We can extend the Gaussian Approximation

applicability through this class of approximations by encoding skewness into its struc-

ture with Skew Normal marginal transformations. In a simpler case, we may consider

the Improved Gaussian Approximation in (3.17) and apply a correction on the mean

only. Thus we may approximate the entire object in (3.23) with a multivariate Gaus-

sian distribution which still benefits from the Skew Gaussian Copula construction.

However, this choice might be limiting for more extreme applications where the skew-

ness plays a bigger role. Since the general version of the Skew Gaussian Copula does

not have a proper shape, we can construct a surrogate of the same class by taking

advantage of the mixture structure in (3.23). Because of the sum properties, we

can easily compute the moments up to order three for each involved Skew Gaussian

Copula density and combine them into one single object with similar properties. We

integrate out the posterior summary of π̃SGC(xS|θk,y) with respect to each inte-

gration point θk and then combine them all into one. Such algebraic manipulation

leads to a new multivariate joint structure that still preserves the precision structure

and properties of the original Skew Gaussian Copula but with newfound moments.
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This approach can also be applied to linear combinations since we retain both the

mean vector µ̃(θ) of the Skew Normal marginals and the covariance matrix structure

Σ∗
SS(θ) within a sub-block indexed by S. Here the covariance matrix Σ∗

SS(θ) denotes

the extracted solution within the assumed subset S of the linear system QΣ = I.

As xS|y ∼ π̃(xS|y) by assumption, then we can calculate its moments in terms of a

Skew Gaussian Copula as follows

ESGC[xpS|y] =

∫
S

xpSπ̃(xS|y) dxS

=

∫
S

xpS

K∑
k=1

π̃SGC(xS|θk,y)wk dxS

=
K∑
k=1

wk

∫
S

xpSπ̃SGC(xS|θk,y) dxS

=
K∑
k=1

wk ESGC[xpS|θk,y]

=
K∑
k=1

wkµ̃
(p)
S (θk) (3.24)

where µ̃
(j)
S (θk) defines all the jth marginal non central moments of the full condi-

tional densities in (3.24). The moments up to order p = 3 construct a surrogate

Skew Gaussian Copula joint approximation to π(xS|y) with mean ESGC[xS|y] = µ̃S,

covariance structure Σ∗ and Skew Normal marginals by matching the third order mo-

ment ESGC[x3
S|y]. Through the third order moment we get the skewness γSGC(xS|y)

by using the formula

γSGC(x|y) =
ESGC(x3

S|y)− 3 ESGC(x2
S|y) ESGC(xS|y) + 2 E3

SGC(xS|y)

[ESGC(x2
S|y)− E2

SGC(xS|y)]
3
2

(3.25)
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Since mean, variance, and skewness for each marginal are available, we can derive

proper Skew Normal densities by simply matching their respective moments. Indeed,

we can map each skewness component to the respective Skew Normal parameters de-

noted by location ξ, scale ω, and skewness index α. This task can be accomplished by

using the method of moment estimation procedure (MME), which sets a three equa-

tions system based on matching the first three order moments (Ghorbanzadeh et al.

(2017)). We can compute all the results by using the available δ-parameterization of

the Skew Normal family as follows

Definition 9 (δ-parameterization)

Let {ξi, ωi, αi} be a set of parameters triplet of a Skew Normal distribution and γi

the skewness for each marginal latent field term xi with mean µi and variance σ2
i for

i = 1, . . . , N . Then we can analytically compute a new δ̃i parameter

δ̃i = sign(γi)

√√√√√ π
2
|γi|2/3(

4−π
2

)2/3

+ |γi|2/3
(3.26)

in terms of the skewness γi. Based on MME, we get

α̃i =
δ̃i√

1− δ̃2
i

ω̃i =

√
πσ2

i

π − 2δ̃2
i

ξ̃i = µi − ω̃iδ̃i

√
2

π

which is the δ-parameterization for the initial triplet.

Each marginal of the surrogate Skew Gaussian Copula joint approximation π̃SGC(xS|y)

in the subset S is represented by a Skew Normal density derived from its respective

system solution.
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3.2.2 Extension to Linear Combinations Ax

We can also apply Skew Gaussian Copula joint approximations to additive linear com-

binations involving latent components. Due to the additive structure, we expect the

true posterior densities of these linear combinations to closely follow a Gaussian pat-

tern as the subset dimension |S| increases. Therefore the Skew Gaussian Copula class

appears to be a proper natural candidate for constructing accurate approximations

of their posterior densities. In this section we define an additive linear combination

l(x) = Ax as a vector of dimension M with A being a M × N matrix of indexes

that generalizes the notation S into M additive linear combinations and x follows the

distribution of a Skew Gaussian Copula as in (3.15). Its joint density is approximated

by

π̃(Ax|y) ≈
K∑
k=1

π̃SGC(Ax|θk,y)wk (3.27)

with Skew Gaussian Copula approximations applied on the linear combination vector

Ax. Similarly to (3.24) we can compute the moments for (3.27) by using

ESGC[(Ax)p|y] =
K∑
k=1

wk ESGC[(Ax)p|θk,y] (3.28)

where (Ax)p = Apxp in expression (3.28) denotes a power vector-wise evaluation of

each component in the M -dimensional linear combination vector Ax. Therefore the

respective posterior moments up to order p = 3 are the following
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ESGC[Ax|y] = A

K∑
k=1

wk ESGC[x|θk,y] = A
K∑
k=1

wkµ̃(θk) = Aµ̃

ESGC[(Ax)2|y] =
K∑
k=1

wk VarSGC(Ax|θk,y) +
K∑
k=1

wk[ESGC[Ax|θk,y]]2

= diag[AΣ∗AT ] + [Aµ̃]2 (3.29)

where µ̃ and Σ∗ are the mean vector and covariance matrix of the Skew Gaussian

Copula joint approximation after integrating out θ. Since we need to evaluate the

third moment to get the skewness of the linear combinationAx, we can use its central

moment representation

ESGC[(Ax−Aµ̃)3|y] =
K∑
k=1

wk ESGC[(Ax−Aµ̃(θk))3|θk,y]

= A3 ESGC[(x− µ̃)3|y]

= A3γSGC(x|y)[diag(Σ∗)]
3
2 (3.30)

which only depends on the central third-order moments of the latent field x since

all the other mixed moments are zero (see applications in Phillips (2010) for more

details on moments of a multivariate Gaussian distribution). Thus, we can evaluate

the overall skewness for the linear combination vector Ax as

γSGC(Ax|y) =
ESGC[(Ax−Aµ̃)3|y]

(diag[AΣ∗AT ])
3
2

(3.31)

Since the Gaussian copula structure remains unscathed except for the marginals, we

can apply the same argument of (3.23) to the Skew Gaussian Copula in (3.27). The

first two order non central moments in (3.29) provide information for the mean sum-
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mary Aµ̃ and the new covariance structure AΣ∗AT where Σ∗ is the entire N × N

covariance structure of the latent field x. The third central order moment in (3.30) is

not zero by Skew Gaussian Copula construction and provides skewness information

for each marginal linear combination in Ax. Cross covariance terms within AΣ∗AT

define the covariance amongst different linear combinations h and l and are accord-

ingly computed as

CovSGC

[ N∑
i=1

Ah,ixi,

N∑
i=1

Al,ixi

∣∣∣y)
]

= ESGC

[ N∑
i=1

Ah,ixi

N∑
i=1

Al,ixi

∣∣∣y)
]
−

− ESGC

[ N∑
i=1

Ah,ixi

∣∣∣y)
]

ESGC

[ N∑
i=1

Al,jxi

∣∣∣y)
]

=
N∑
i=1

Ah,iAl,iΣ
∗
i,i +

N∑
i=1

i−1∑
j=1

(Ah,iAl,j + Ah,jAl,i)Σ
∗
i,j

(3.32)

The weighted moment structure in (3.24) and (3.28) provide the posterior sum-

maries for the surrogate Skew Gaussian Copula which approximates the joint density

π(Ax|y). As a result, the skewness adjustment is induced by approximating the

marginals of the joint density with Skew Normal distributions.

3.2.3 Approximating two linear combinations jointly

In previous sections we introduced new tools to build deterministic approximations

for posterior joint densities of the form π(xS|y) and π(Ax|y) in a subset S of the

latent field x. Due to their deterministic nature, these approximations are fast to

compute and construct a surrogate Skew Gaussian Copula object in a subset of the

latent field (see an application on Appendix C). To fully understand the mathematical

approach, we provide a two dimensional example where we construct surrogate Skew

Gaussian Copula approximations π̃SGC(xS|y) and π̃SGC(Ax|y). We consider a two
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dimensional latent field x = (x1, x2), corresponding to S = {1, 2}, and matrix of

indexes A =

1 1

1 −1

 to define linear combinations Ax = (x1 +x2, x1−x2). Based

on the formulas in (3.24), we assume that π(xS|y) is approximated by a surrogate

Skew Gaussian Copula with ESGC(xS|y) = (µ̃1, µ̃2) = (1, 2), Σ∗ =

2 1

1 5

 and

skewness γSGC(xS|y) = (−0.4, 0.6). Then we construct a surrogate Skew Gaussian

Copula approximation to π(Ax|y) with observations y. From (3.29) and (3.30) we

compute the moments

ESGC[Ax|y] = Aµ̃ = (µ̃1 + µ̃2, µ̃1 − µ̃2) = (3,−1)

AΣ∗AT =

 9 −3

−3 5


γSGC(Ax|y) =

A3γSGC(x|y)[diag(Σ∗)]
3
2

(diag[AΣ∗AT ])
3
2

= (0.206,−0.701) (3.33)

By construction of the Skew Gaussian Copula, we approximate the corresponding

marginals π(x1 + x2|y) and π(x1 − x2|y) from Ax using Skew Normal densities with

location ξ, scale ω and skewness parameter α

π̃(x1 + x2|y) ≈ SN(−0.107, 1.796, 1.217)

π̃(x1 − x2|y) ≈ SN(4.633, 3.454,−3.233) (3.34)

The parameters for the expressions above are obtained by matching the moments

in (3.33) to the δ-parameterization in Definition 9. The example shows that manip-

ulating the posterior summaries of a Skew Gaussian Copula still leads to a similar

surrogate of the same class. Thus we obtain a straightforward analytical approxima-
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tion for each additive linear combination component in Ax, therefore easing their

inference analysis. Although this other joint approximation may lack accuracy in

more complex settings, the available results are convincing and allow streamlined

and fast marginal inference for additive linear combinations of the latent field.

3.3 Mixture of Skew Gaussian Copula densities

Marginal posterior inference is well established in the INLA methodology by us-

ing Laplace Approximations onto mixture representations of their latent posterior

marginals (see Chapter 2 for general details). The Skew Gaussian Copula class intro-

duced in Section 3.1 offers a new mathematical formulation to approximate the full

joint density π(x|y,θ) by exploiting a Gaussian Copula and marginal skewness ad-

justments. Some features of the class go beyond the simple Gaussian Approximation

and can be exploited to compute deterministic approximations for posteriors of linear

combinations of the latent field as well (see Section 3.2). While these initial tools can

properly account for these posterior problems, the same does not hold for the entire

joint posterior density of a Latent Gaussian Model in (2.4). In general, its shape is

unknown, and we cannot construct a deterministic approximation that satisfies any

of the available INLA strategies. Even though no particular joint distribution can be

assumed, we can still use the INLA methodology and new joint inference tools to con-

struct a close approximation to the truth by using an accurate sampling Monte Carlo

scheme. We recall the mixture representation of the posterior marginals in expres-

sion (2.56) and the new defined class of Skew Gaussian Copula densities π̃SGC(x̃|θ,y)

which assumes a Gaussian Copula construction. Then we can write down a similar

mixture density structure for the approximation of the overall joint π(x,θ|y) as

π̃(x̃,θ|y) ∝
∑
k

π̃SGC(x̃|θ,y)π̃(θ|y)1[θ=θk]∆k (3.35)
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with {θk, k = 1, . . . , K} being the configuration points obtained from the grid explo-

ration phase and ∆k the area weights (see Section 2.5.2 for details). We interpret

the approximation (3.35) as a mixture of Skew Gaussian Copula distributions where

Skew Normal densities provide parametric assumptions for its marginals. This class

of joint approximations represents the only source of contribution and error to the

full joint approximation accuracy. For this reason, the resulting joint approximation

does not carry the same accuracy of the posterior marginals π̃(xi|y) since it lacks a

Laplace approximation step. As similar as it may appear to expression (2.56) for the

marginal approximations, this joint approximation representation is achieved through

an exact sampling Monte Carlo approach conditioned on the pre-computed grid points

of the hyperparameter space obtained in (2.49). Using sampling may sound like a

step back when the entire INLA philosophy relies on fast to compute deterministic

approximations. However, as per sampling-based strategies like Markov Chain Monte

Carlo methods, we are not blindly exploring the joint parameter space with proposal

distributions. The method builds a joint posterior approximation of the latent field

point by point using weighted pre-computed probabilities of π(θ|y) and samples from

the respective Gaussian Copula used to define the new approximation. The following

two-step scheme summarises how this is done:

• we draw samples from the entire hyperparameter set θ using the pre-computed con-

figuration points {θk, k = 1, . . . , K} in terms of their mass probability function,

as shown in (3.35). This translates into sampling from a multinomial process

where each θk has a point-mass probability;

• for each sampled configuration point θk a N -dimensional sample is drawn from

π̃SGC(x̃|θ,y) with weighted probability π̃(θ|y)1[θ=θk] that sum up to one ∀k.

The Skew Gaussian Copula class offers an efficient and accurate formulation to com-

pute the joint posterior approximation in (3.35). We can always draw samples from
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this multivariate density by Gaussian Copula construction, and we can do it fast.

When considering exceptional cases of the class such as the Gaussian Approximation

or its improved version in (3.17), the computations involved in the sampling approach

are straightforward because of the main Gaussian structure. Things get more cum-

bersome when we employ the version of the Skew Gaussian Copula with Skew Normal

marginal transformations. While the Gaussian Approximation was already part of

the existing INLA implementation, the Skew Gaussian Copula required more coding

to keep the computational process fast. We have accomplished such a task by devel-

oping a new fast strategy that combines accurate mappings and interpolation of the

solutions (see Section 3.3.2).

3.3.1 Skew Normal Marginal Transformations

Differences between mean (3.16) and skewness (3.9) correction can be observed in

Figure 3.1 where we assume several levels of skewness on the Skew Normal trans-

formed latent marginals compared to the non transformed latent terms {x1, . . . , xN}

where the transformation is an identity.

The straight 45 degrees black line represents the mean corrected standardized values zi

while the colored lines show the skewness correction under the quantile Skew-Normal

transformation F̃−1() in (3.9). The intersection points pl and pr underline a marginal

threshold to detect when the skewness effect changes the distribution. We see that

no changes happen in the range [pl, pr], which is ≈ [−1.5, 1.5]. The mean correction

described by the black line is straight simply because no transformation is applied in

this case. Instead, the skewness correction colored lines underline different behaviors

according to the skewness values in the upper left corner of the legend. Here we

have chosen six different levels of skewness from -0.8 to 0.8: higher is the skewness,

higher is the effect on the marginal latent distribution with a greater focus on the

tails. Moreover, a positive (negative) skewness effect leads to mostly underestimating
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Figure 3.1: Standardized latent values zi compared with the skewness corrected values
x̃i through the quantile Skew Normal transformation F̃−1(·) on the range (−4, 4). The
intersection points pl and pr are used as an exact threshold for detecting the skewness
effect in the tails of the ith marginal distribution.
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(overestimating) the latent variables when the Improved Gaussian approximation

in (3.17) is used. For example, if we evaluate zi = 3 under marginal skewness equal

to -0.8, we would end up with a corrected result below two instead of three by mean

correction assumption. However, summaries like mean or median may not detect this

effect since most of the correction effect arises in the distribution’s tails. The deviation

can be severe if the marginal skewness gets higher in absolute terms, and the plot

confirms this pattern. Also, the computations of the transformation F̃−1() are not

straightforward and can require several evaluations proportional to the dimension of

the latent field x. A solution to this computational burden is discussed in the next

section.

3.3.2 Computational Strategy for the Skewness Correction

To properly apply a Skew Gaussian Copula approximation for the mixture represen-

tation of the joint posterior in (3.35), we need to consider the marginal skewness

adjustments of the transformations (3.9) in our computational scheme. Both Gaus-

sian and Improved Gaussian Approximations ignore this task due to their Gaussian

nature and structure. In mathematical terms, our target requires to solve the follow-

ing vectorial quantile equation a possibly large number of times

F̃−1[Φ(x)] = p, (3.36)

since the Skew Gaussian Copula joint approximation needs to be evaluated for each

configuration point θk. The number of operations is then proportional to N · s where

N denotes the dimension of the latent field x and s the pre-defined number of sam-

ples for constructing the joint posterior approximation in (3.35). This number can

increase fast if both N and s are high. Therefore we must solve the equation efficiently

to avoid any computational burden. Although the quantile equation in (3.36) does

not have a closed-form solution, it is possible to compute exact evaluations through
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an optimization step. In R language, an implementation of the solver is available

in the function qsn() within the Skew Normal package sn. The algorithm mainly

uses Newton Raphson steps or finite difference methods if the first option fails. The

combination of Newton Raphson steps and evaluations of the Gaussian cumulative

densities Φ(·) can be heavy if N · s dimension is high. Also, the lack of vectoriza-

tion for different skewness values is as critical as the slow optimization solver. Not

even the multivariate version of the functions, as suggested by Azzalini and Capitanio

(1999) can fix this issue since the required operations are marginal and independent,

and more, a multivariate quantile version does not exist. Thus we handle the en-

tire evaluation process through a different intuitive and fast approach that tabulates

all the solutions and combines them in a well-defined scheme avoiding unnecessary

computations. Proposition 1 summarises the new approach.

Proposition 1 (Mapping and Interpolation two-way strategy)

We assume to have access to all marginal skewness {γi, i = 1, . . . , N} related to the

latent field x = {xi, i = 1, . . . , N} and define the Skew Normal mapping function

according to the δ-parameterization in Definition 9. Then

1. First a local cache of object files is being created within the local private INLA

environment in R by assuming few useful initial constants;

2. Next the δ-parameterization is used to map each skewness γi into the respective

Skew Normal triplet of parameters {ξi, ωi, αi}. We exploit these results to fit

the correct marginal Skew Normal distribution for each xi;

3. For each Skew-Normal marginal a fixed number of points is pre-computed and

stored. Then we apply an interpolation process to compute all possible solutions

with a pre-defined level of accuracy;

4. Finally we detect the correct interpolant by using a binary search algorithm in

terms of each marginal skewness input value.
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The above procedure surpasses the limits of available methodologies by solving the

vectorial quantile equation in (3.36) from a two-dimensional perspective where the

input is a N × s dimensional object.

3.3.3 Speed Results of the new Quantile function

The numerical solutions to the vectorial problem in (3.36) can be easily achieved

with R default packages. They ensure accurate results, but they are too slow for our

needs. In this part of the thesis, we propose a new two-way strategy, summarised in

Proposition 1, which speeds up these available computational strategies. The results

already satisfy our speed requirements without relying on more efficient program-

ming languages such as C/C++ or Python. Here we show a few details behind the

new numerical approach with a final table of speed performance between the origi-

nal R implementations and our alternative code. The constants in the first step of

the strategy determine many important numerical details to ensure a good balance

of accuracy and speed for the next iterations. We create fixed global constants to

control the range, the number of evaluations, and digits accuracy for the required

interpolants. The user is free to change these default options at his own will, but

any minor adjustment can significantly affect accuracy and speed performances. In

general, the default input values give accurate outcomes. For example, the built-in

functions construct the interpolants by computing all possible skewness results with a

precision up to the second digit. Increasing the number of digits leads to an increment

in the number of interpolant functions to be computed. Although this enlarges the

marginal fit accuracy of a negligible order, the computational burden becomes much

heavier. By keeping these assumptions on the global constants, we can solve the ini-

tial problem by tabulating all possible solutions from the standard available quantile

solver qsn() in R and then save all the interpolants into a cache environment. This

part is only computed once and exists in the local R global environment session. Any
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Table 3.1: Speed Time Results comparison between the standard qsn() function and
the new strategy. Function evaluations based on 100 replications and N = 106 points.
Function f̃std, F̃std and F̃−1

std are respectively the pdf, cdf and quantile function of the

Skew Normal distribution available in qsn(). Accordingly f̃fast, F̃fast and F̃−1
fast relate

to the new strategy.

Min Mean Max

f̃std 1.51ms 2.23ms 7.32ms

f̃fast 1.27ms 2.1ms 6.1ms

F̃std 6221µs 9144µs 19973µs

F̃fast 817µs 1243µs 4143µs

F̃−1
std 22.94s 25.27s 30.46s

F̃−1
fast 1.61s 1.78s 3.18s

marginal skewness adjustment through the Skew Normal transformation is applied

to the samples by calling the correct interpolant stored in the cache. Hence, this

new computational approach is both automatic and fast. In Table 3.1, we compare

the standard available solver qsn() and the new strategy in Proposition 1 under 100

replications. We also report the individual results for probability density function,

cumulative density function, and quantile equation of the Skew Normal distribution

performance of both implementations in R. The F̃−1 notation in the table refers to

F̃−1[Φ(x)]. In contrast, all the employed functions for the comparative analysis are

computed using similar interpolants to avoid multiple Skew Normal density compu-

tations. The results are obtained through N = 106 evaluations of the latent field,

and we can see that the new strategy achieves the biggest gain in speed. Indeed,

the speed-up coming from the new quantile version is approximately 15 times faster

than qsn() on average. Therefore we can undoubtedly state that the two-way strat-

egy grants better computational advantages than available R solvers and should be

preferred in this case.
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3.4 Numerical Results using Simulations

This section compares the previously introduced joint posterior approximations based

on the newly defined Skew Gaussian Copula class and its derivations. To verify the

goodness of this class’s new applied skewness corrections, we show the marginal results

derived from these joint posterior approximation strategies. We set simulations from

both a Poisson and Binomial likelihood in a Latent Gaussian Model framework to

trigger more extreme skewed outcomes and underline the copula advantages. In this

way, we can better show the accuracy and speed performance of the Skew Gaussian

Copula object. We use Markov Chain Monte Carlo (MCMC) sampling approaches

from JAGS (Plummer et al. (2003)) to get true, comparable results from the joint

posterior. Then we compare these sampled outcomes to the ones obtained by the

joint posterior approximation in (3.35) from INLA. Here we use both the Simplified

Laplace and full Laplace strategy to point out the different levels of accuracy that

affect the joint posterior result when more assumptions are used. More applications

of the joint posterior approximation with location adjustments only are discussed in

Seppä et al. (2019) or Wakefield et al. (2016). Similar marginal comparisons on the

approximations for linear combinations are shown in Section 3.2 where we show the

matching results with their sampling counterpart.

3.4.1 Joint Posterior Corrected Inference

To show the features of the Skew Gaussian Copula class, we set a comparative

Bayesian analysis using both MCMC methods with JAGS and Laplace strategies

with R-INLA. The applications are based on data simulations from Poisson and Bi-

nomial likelihoods within a hierarchical GLMM model framework. The hierarchical

structure of the Poisson example is described as follows
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y|µ ∼ Poi(µ)

µ = exp(α + u)

u ∼ Nm(0, τ−1I)

α ∼ N(0, 1000)

τ ∼ Ga(0.1, 0.1)

The data y have been simulated from a Poisson distribution with N = 50 observations

and m = 10 randomized groups for the vector of random effect u and each one was

simulated from a Gaussian distribution with standard deviation σ =
√
τ−1 = 1.5 to

trigger high marginal skewness. Similarly, we construct the Binomial example using a

logit link function applied to its probability parameter p. As these simulation settings

purposely show skewed posterior marginals, the mean corrected version of the Skew

Gaussian Copula, or Improved Gaussian Approximations, may appear inaccurate in

describing the outcomes. In this framework, we know that MCMC methods require

long-run simulations to be reliable in terms of the Monte Carlo error. Instead, INLA

relies on deterministic marginal posterior approximations, which are empirically ac-

curate. Section 3.3 tells us that a full joint posterior inference of a Latent Gaussian

Model in INLA is only possible through a sampling-based approach in terms of a mix-

ture of Skew Gaussian Copula densities. The resulting joint posterior approximation

benefits from the marginal corrections derived from the Skew Gaussian Copula class.

The computational setup in the R language for both software is given below

• JAGS: simulating 6 × 106 samples for 20 independent Markov Chains with 102

iterations thinning and dropping 106 samples as burn-in. We handled the sim-

ulation in parallel by using our server at KAUST whose specs are: Intel(R)

Xeon(R) Gold 6130 CPUs@2.10GHz with 512 Gb of RAM, two sockets with
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16 cores, each with two threads per core. This parallel setting takes around 11

minutes to complete.

• INLA: simulating 105 samples from the joint sampler with mean and skewness

correction. The mean corrected strategy takes around 4 seconds, while the

skewness corrected one takes approximately 14 seconds on average. With 104

samples, the times are 0,6 and 1,5 seconds for both mean and skewness correc-

tions. We have run these simulations on a Dell laptop whose specs are: Intel(R)

Core(TM) i7-10710U CPU @ 1.10GHz with 16 Gb of RAM, one socket with

6 cores with two threads per core. This scheme is computationally heavy for

the skewness corrected version of the Skew Gaussian Copula since it requires

many evaluations. In most cases, there is no need to use so many samples as we

observe less skewed marginals. Therefore, the computational difference between

the two corrections is almost negligible. This average time is obtained under

100 function replications. The slow down would have been way more relevant

if we used, for example, default R approaches (see Section 3.3.3).

Here we notice the substantial gain in speed with the INLA setup compared to JAGS.

The joint INLA sampler is around 170 and 50 times faster for the mean and skewness

corrected SGC approach. To keep things simple, we show results of a single linear

predictor marginal for both the Poisson and Binomial GLMM example. We extract

the marginal representation of these results from the joint posterior outcomes ob-

tained from JAGS and R-INLA to verify the new skewness correction. In particular,

Figures 3.2 and 3.4 show the marginal results for the chosen linear predictor marginal

using the Simplified Laplace strategy in INLA. This strategy is preferable since the

results can be computed fast with a slight accuracy reduction cost. The skewness

corrected marginals almost precisely match the Simplified approximated marginals.

In contrast, the mean corrected results are more inaccurate to INLA but closer to

the MCMC samples produced by JAGS. The mean correction appears to match the
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MCMC marginal outcome better around the mode at a detail level, but then it gets

inconsistent as soon as we switch to the full Laplace strategy. Figures 3.6, 3.7, 3.8 and

3.9 show the same marginals results when fitting the model with the Laplace strategy

in INLA. It can be clearly observed that the skewness corrected results from the joint

follow quite closely the MCMC results while the mean corrected ones are farther away.

Although the joint posterior approximation does not retain the same accuracy as the

approximated Laplace marginals by construction, we still notice that the skewness

corrected results produce more appropriate and coherent outcomes than the mean cor-

rected ones and therefore should be preferred in a general application. As observed

in Section 3.3.1, positive (negative) marginal skewness leads to an underestimation

(overestimation) of the actual latent posterior results. The accurate matching of the

marginal MCMC distributions, the approximated INLA marginals, and the skew-

ness corrected marginals from the INLA joint sampler confirms this pattern. The

marginal skewness adjustments of the Skew Gaussian Copula construction are more

coherent with the marginal outcomes produced by the default INLA strategies. In

such extreme settings, the skewness effect on the marginals should not be ignored

since the deviation can propagate to the joint distribution. The results show that

the general version of the Skew Gaussian Copula with skewness corrected marginals

provides more consistent and generally accurate results when the marginal skewness

is not negligible. Indeed, when used, the posterior marginal outcomes match the ones

from the Simplified Laplace strategy. We can obtain even more accurate results using

the full Laplace strategy, which never fails compared to MCMC. Appendix B shows

both JAGS and INLA implementations of the hierarchical models of this section using

R-INLA language.
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Figure 3.2: Posterior marginal representation for linear predictor η9 of the Poisson
GLMM model with marginal skewness is around -0.38 for all the configuration points.
The curves display the outcomes from different strategies: posterior marginal from
JAGS (black), mean corrected (blue) and skewness corrected (red) marginal from the
SGC and the Simplified Laplace posterior marginal (green) computed by INLA.
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Figure 3.3: A focus on the right tail of the linear predictor η9 of the Poisson GLMM
model where the skewness propagation to the tail is more evident. The skewness
corrected marginal (red) from the SGC totally matches with the Simplified Laplace
marginal result (green).
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Figure 3.4: Posterior marginal representation for linear predictor η14 of the Binomial
GLMM model with marginal skewness is around 0.38 for all the configuration points.
The curves display the outcomes from different strategies: posterior marginal from
JAGS (black), mean corrected (blue) and skewness corrected (red) marginal from the
SGC and the Simplified Laplace posterior marginal (green) computed by INLA.
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Figure 3.5: A focus on the right tail of the linear predictor η14 of the Binomial GLMM
model where the skewness propagation to the tail is more evident. The skewness
corrected marginal (red) from the SGC totally matches with the Simplified Laplace
marginal result (green).
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Figure 3.6: Posterior marginal representation for linear predictor η9 of the Poisson
GLMM model with marginal skewness is around -0.4 for all the configuration points.
The curves display the outcomes from different strategies: posterior marginal from
JAGS (black), mean corrected (blue) and skewness corrected (red) marginal from the
SGC and the Laplace posterior marginal (green) computed by INLA.
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Figure 3.7: A focus on the right tail of the linear predictor η9 of the Poisson GLMM
model where the skewness propagation to the tail is more evident. The skewness
corrected marginal (red) from the SGC closely matches with the Laplace (green) and
MCMC marginal (black) result.
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Figure 3.8: Posterior marginal representation for linear predictor η14 of the Binomial
GLMM model with marginal skewness is around 0.33 for all the configuration points.
The curves display the outcomes from different strategies: posterior marginal from
JAGS (black), mean corrected (blue) and skewness corrected (red) marginal from the
SGC and the Laplace posterior marginal (green) computed by INLA.
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Figure 3.9: A focus on the right tail of the linear predictor η14 of the Binomial GLMM
model where the skewness propagation to the tail is more evident. The skewness
corrected marginal (red) from the SGC closely matches with the Laplace (green) and
MCMC marginal (black) result.
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3.4.2 Fast Inference for Linear Combinations

The Skew Gaussian Copula class can also be used to construct approximations for

linear combinations of a subset of the latent field (see Section 3.2). Appendix C shows

an application of new R-INLA tools that accomplish this task. Again we consider

the Poisson hierarchical setting of Section 3.4.1 and construct four increasing addi-

tive linear combinations in terms of the linear predictors (η9, η10, η11, η12, η13). We

aim to explore the posterior approximations of the linear combinations π(η9 + η10|y),

π(η9 + η10 + η11|y), π(η9 + η10 + η11 + η12|y), π(η9 + η10 + η11 + η12 + η13|y) by using

both the sample-based joint posterior approximations in (3.35) and its surrogate ver-

sion specified by (3.27) using moments. The joint posterior approximation obtained

by sampling would be more accurate as it exploits the entirety of the information.

Figure 3.10 shows a comparison between these two methods in terms of the resulting

linear combination marginals. Here we notice no major difference between the two

approximation strategies. Hence the surrogate approach by matching moments of a

mixture of Skew Gaussian Copula densities can be a preferable choice since it avoids

sampling and produces faster results. Posterior summaries for the linear combinations

of the Poisson example are shown in Table 3.2 where we compare both approaches

through Kullback Leibler distance using Monte Carlo (Hershey and Olsen (2007)).

This divergence measure indicates how far the new surrogate approximation based

on moment matching is from its true sampling counterpart. Despite the accuracy

dispersion of a multivariate object, the KLD measure shows a 10−3 order precision

for all marginal results. This means that the resulting approximation produces al-

most identical results to its more accurate sampling version. A simple example can

emphasize this argument by considering two generic, well-defined probability density

functions f and g that need to be compared. Their KLD is

KLD(f ||g) =

∫
f(t) log

(f(t)

g(t)

)
dt = Ef

[
log
(f(t)

g(t)

)]
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We assume f to be a N(0, 1) and g a N(δ, 1) with δ being a varying location constant.

In this setting the computed KLD is

KLD(f ||g) =

∫
1√
2π

exp
(
−t

2

2

)[
−t

2

2
+

(t− δ)2

2

]
dt =

δ2

2

Therefore a KLD equal to 10−3 means that the function g has location δ ≈ 0.04 which

is really close to the truth. A δ ≈ 0.01 corresponds to a KLD equal to 10−4. Similar

conclusions apply for varying standard deviation as well. Even the plots show that

the lack of accuracy in the surrogate version of the Skew Gaussian Copula is almost

negligible compared to its sampling counterpart. Table 3.3 reports the computational

time differences of using the joint sampler with a different number of samples and its

deterministic surrogate version. From Table 3.3 we observe a considerable speed-up

of the latter one when applied to linear combinations. Because of exact algebraic

operations, this version is 1100 and 4200 times faster on average than 103 and 104

samples from the joint posterior sampling-based approach.
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Figure 3.10: One dimensional comparison for all the linear combinations obtained
from the joint posterior using 105 samples. Blue line marginal is obtained by sampling
while red line represents the deterministic marginal result derived from the joint
SGC class. All marginal linear combinations are skewed with marginal skewness
γ(η9 + η10|y) = −0.33, γ(η9 + η10 + η11|y) = −0.28, γ(η9 + η10 + η11 + η12|y) = −0.21
and γ(η9 + η10 + η11 + η12 + η13|y) = −0.18.

Table 3.2: Posterior summaries and KLD evaluation for all one dimensional linear
combinations in the Poisson hierarchical model.

Index Mean Sd 0.025quant 0.5quant 0.975quant Mode kld

η9 + η10 2.116 0.505 1.042 2.146 3.025 2.209 1.26× 10−3

η9 + η10 + η11 3.912 0.537 2.783 3.939 4.893 3.995 1.18× 10−3∑12
i=9 ηi 5.776 0.595 4.545 5.798 6.885 5.842 1.21× 10−3∑13
i=9 ηi 5.772 0.718 4.300 5.794 7.120 5.838 1.25× 10−3
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Table 3.3: Speed Comparison between the joint deterministic algorithm and its sam-
pling version using different sample sizes for computing all one dimensional linear
combinations of the Poisson simulation. The performance results have been mea-
sured under 100 replications.

Method Min Mean Max

no samples 0.18ms 0.36ms 0.66ms
103 samples 177ms 396ms 742ms
104 samples 1056ms 1524ms 2024ms

3.5 Discussion

INLA achieves great computational benefits by making approximate Bayesian infer-

ence on Latent Gaussian Models focusing on posterior marginal results. In Section 3.1,

we also provided a general theory for reaching accurate approximations to the entire

joint posterior density that can also encode corrections for both location and skew-

ness. This was possible by combining a Gaussian Copula on the latent field and Skew

Normal marginal transformations with borrowed information from the more accurate

marginal approximations. We enclosed these joint approximations in a unique class

named Skew Gaussian Copula, which applies the marginal adjustments we wanted

while retaining the original correlation structure of the model. A mixture representa-

tion of this newfound class of approximations allowed a valuable range of possibilities

for well approximating posteriors of functionals in heavily skewed settings. Fast and

deterministic approximations for sets of additive linear combinations could be pro-

duced from a surrogate Skew Gaussian Copula object by matching moments of the

mixture with Skew Normal ones. When the functional complexity increases or the

analysis scope is larger, we could construct a more accurate joint approximation from

the same mixture by using an exact sampling Monte Carlo scheme, including the

hyperparameter uncertainty. These approximations granted more accurate and con-

sistent outcomes with INLA when applied in contexts where the posterior is skewed

while remaining computationally efficient. This methodology based on Skew Gaussian
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copula joint densities has been appropriately embedded in R-INLA but can be com-

putationally heavy in contexts where the grid is finer. If more configuration points

for the hyperparameter set {θk, k = 1, . . . , K} are computed, then the additional

computational burden becomes more evident. Additional strategies may be needed,

such as distributing the computations amongst the configuration points within a par-

allel setting. Unlike its sampling counterpart, the surrogate approximation based on

moment matching is not hindered by a large set of configuration points for the hyper-

parameter set and instantly produces inference. Because of its deterministic features

and fast computations, this construction may be extended to mixed products of the

same terms in the linear combination. However, distributions of products do not have

a clear shape, and the Skew Normal assumption can likely fail in providing a good ap-

proximation. We can show that the product of more than one random variable largely

deviates from Gaussianity and gets spikier and spikier. Figure 3.11 shows that even

the Skew Normal density is not able to model the shape of a product appropriately.

Unless the distributional properties of the non-linear functional are known almost

exactly, the new strategies introduced in this chapter have limited use. Even though

products of random variables are important in several statistical contexts such as

factor models or interaction terms, sums of random variables are more popular, easy

to handle, and widely used.
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Figure 3.11: Comparative example of a tri-product linear combination of random
variables. The histogram shows the true result of the product z = xyk while the
red line represents the corresponding Skew Normal adaptation using the moments
information. The true result is indeed far from the Skew Normal fit.
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Chapter 4

Extending the Simplified Laplace strategy

Latent Gaussian Models represent a broad class of hierarchical models that assume

a Gaussian distribution on the latent field, containing all the unobserved parame-

ters. Sampling-based methods such as Markov Chain Monte Carlo (MCMC) can be

computationally costly when applied to this class of models. Alternative strategies

have been proposed in the literature to overcome the limits of sampling approaches

when trying to get marginal posterior distributions Ruli et al. (2014); Ruli and Ven-

tura (2016); Ruli et al. (2016). The Simplified Laplace strategy in INLA appears

to be one of the most efficient ways to obtain fast and accurate posterior inference

using marginal approximations based on parametric assumptions. Section 4.1 intro-

duces the Gaussian assumptions on the latent field and points out how this pattern

propagates to both joint and marginal posterior densities. Approximations computed

with the Simplified Laplace approach are particularly appealing for latent hierarchical

structure as their tail behavior closely approaches the one from a Gaussian distribu-

tion. In Section 4.2 we introduce the details behind this strategy which produces

posterior results by fitting Skew Normal distributions to a third-order expansion of

a target Laplace approximation. The Skew Normal family contains many parametric

skewed densities that can be natural candidates for this approximation task Azzalini

and Capitanio (1999, 2003). Therefore we propose an extension of the approach by

choosing a different parametric fit for the marginal posterior approximations, which

requires matching an additional parameter: the Extended Skew Normal distribu-

tion Azzalini and Capitanio (2018); Canale (2011, 2015); Seijas-Macias et al. (2017);
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Paulino Pérez-Rodriguez (2017). We provide a straightforward development and ap-

plication for the new extension by ensuring the computational process remains fast

and robust. In Section 4.3 we produce simulations based on skewed observations from

Poisson and Binomial likelihood models and compare the posterior marginal results

obtained by INLA and JAGS for the MCMC counterpart. The new extended strategy

provides encouraging improvements towards its original version using Skew Normal

densities. This chapter is based on the respective submitted paper in Chiuchiolo et al.

(2022).

4.1 Latent Gaussian Assumption

INLA is extremely efficient when applied to Latent Gaussian Models in terms of pro-

viding fast and accurate posterior inference. Through Section 2.2 we extrapolate two

main intrinsic assumptions that ensure such high accuracy performance in this hierar-

chical model framework: the log-likelihood contribution is log-concave in terms of its

linear predictor, and the latent field follows a multivariate Gaussian distribution. Al-

though these assumptions seem restrictive, many statistical models can be embedded

into this structure. The Gaussian assumption greatly eases the posterior inference

process and keeps the operations to their minimum. Moreover, these assumptions

contribute to desirable tail properties that follow a Gaussian pattern. This section

provides some simple proof of concept and examples to verify this concept.

4.1.1 A Gaussian Latent Field

Log concavity on the log-likelihood is a strong beneficial assumption as it enforces

the distribution on the observed data to be nearly Gaussian when we assume condi-

tional independence to each latent term. These assumptions underline that it is less

fruitful to assume a statistical structure that goes far beyond a Gaussian distribu-

tion when dealing with Latent Gaussian Models. As an example, we first focus on
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a Gaussian Latent field using the same notation for Latent Gaussian Models 2. By

model assumptions, we consider a latent field structure x ∼ N(0,Q), with Q hav-

ing marginal variances equal to 1 while not depending on any hyperparameter, and

y|x ∼
∏n

i=1 π(yi|xi) with n data observations. We also assume |π(yi|xi)| < C̃i where

each likelihood density is a function of xi bounded by a constant C̃i which is unique

for each observation. The posterior distribution of the corresponding latent model is

π(x|y) ∝ π(x)π(y|x) ≤ π(x)C̃ (4.1)

where C̃ =
∏

i C̃i. Since this Gaussian bound exists for the latent joint density, we

can question if a similar bound is preserved for each latent marginal. We will show

that

π(x|y) ≤ C̃π(x)⇒ π(xi|y) ≤ C̃π(xi) (4.2)

where π(xi) is the respective ith Gaussian marginal density from its multivariate

counterpart π(x). The above statement provides a reasonable justification to using

Gaussian assumptions onto the latent field of a Latent Gaussian Model structure.

This marginal implication can be shown in few steps. We define functions gi(xi) =

log(π(yi|xi)) and write the latent joint conditional density as

π(x|y) = G exp
(
−1

2
xTQx+

n∑
i=1

gi(xi)
)

(4.3)

where G is the normalization constant. Each posterior latent marginal xi is obtained

by integrating out all the other latent components x−i
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π(xi|y) =

∫
x−i

π(x|y) dx−i

= exp(gi(xi))

∫
x−i

G exp
(
−1

2
xTQx

)
exp
(∑
j 6=i

gj(xj)
)
dx−i (4.4)

Since each gi(xi) is bounded by our initial assumptions, then

π(xi|y) ≤ C̃i

∫
x−i

G exp
(
−1

2
xTQx

)∏
j 6=i

C̃j dx−i

≤ C̃ exp
(
−1

2
x2
i (Q

−1)−1
ii

)
(4.5)

which corresponds to (4.2). The notation (Q−1)ii refers to the ith marginal vari-

ance term Σii derived from the covariance matrix Σ = Q−1. The result (4.5) shows

that the Gaussian distribution represents a natural bound for each marginal up to

a constant. Distributions with a Gaussian-like behavior are the most natural choice

for approximating posterior marginals. Their tails must follow a Gaussian behavior

while the main bulk of the distribution is free to differ from a Gaussian density be-

cause of location shift and skewness. The Gaussian and Simplified Laplace strategies

outlined in Section 2.5 represent an appropriate embodiment of this Gaussian fea-

ture since their application provides accurate marginal posterior approximations in

most of the cases by exploiting nearly Gaussian distributions. Later we show that

Skew Normal family distributions are natural candidates as their tail behavior ap-

proximately resembles the one from a Gaussian distribution. The Gaussian family

framework provides enough good properties for allowing an accurate representation of

Latent Models, and INLA fully takes advantage of this pattern (see Gaussian Markov

Random Fields (GMRFs) details and sparsity in Section 2.3).
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4.1.2 A Student-t Latent Field

The Gaussian latent field example of the previous section shows that the Gaussian

assumption provides similar properties to the posterior marginals of a Latent Gaussian

Model. In this context, we question if the same argument applies when assuming

more heavy-tailed distribution like the Student-t distribution. Although it shows

non-normal behavior, we can still cast this distribution into a Gaussian hierarchical

structure. Borrowing a result from the literature, we know that if z ∼ tν then

z|λ ∼ N(0, λ−1) with λ ∼ G(ν
2
, ν

2
). This construction is named scale mixture of

normals with λ being an auxiliary variable. Both the auxiliary variable and Student-

t information contribute to define the known hierarchical t-formulation which leads to

well-defined conditional properties. Considering the example in Rue and Held (2005),

Chapter 4, we assume a Student-t latent field x ∼ ta and model its independent

increments by using a RW1 model while also conditioning on some auxiliary variables

λ = (λ1, . . . , λn−1) with n data observations y. Each data point yi is Gaussian

distributed with mean xi, meaning that yi ∼ N(xi, τ
−1
y ) with a certain precision τy.

By scale mixture assumption the RW1 model

∆xi|λ ∼ N(0, τ−1
x λ−1

i ), i = 1, . . . , n− 1 (4.6)

is Gaussian distributed with precision τx if each λi is distributed as G(a
2
, a

2
). Then

the Gaussian assumption on the conditional latent field x leads to the conditional

density

π(x|λ, τx) ∝ τ
n−1
2

x

(n−1∏
i=1

λi

) 1
2

exp
(
−τx

2

n−1∑
i=1

λi(∆xi)
2
)

∝ τ
n−1
2

x

(n−1∏
i=1

λi

) 1
2

exp
(
−τx

2
xTQ∆x

)
(4.7)
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where Q∆ = Dx
TDλDx with Dλ being a (n − 1) × (n − 1) diagonal matrix with

diag(Dλ) = λ and Dx being a (n− 1)× n matrix as follows

Dx =



−1 1

−1 1

. . . . . .

−1 1


(4.8)

Under the above construction, we assume our likelihood to be bounded by constants

K̃1, . . . , K̃n, and end up with the following joint posterior relation

π(x,λ|y) ∝ π(y|x)π(x|λ)π(λ) ≤ π(x|λ)π(λ)K̃ (4.9)

where K̃ =
∏

i K̃i is an overall constant. Then the full conditional is bounded as

π(x|λ,y) ≤ K̃π(x|λ) (4.10)

Similarly to the Gaussian latent field case, we obtain bounds for the corresponding

marginals of this RW1 example as

π(xi|λi,y) ≤ K̃i exp
(
−τxλi(∆xi)

2

2
(Q∆

−1)−1
ii

)
, (4.11)

that are again represented by Gaussian distributions. The inequalities (4.10) and (4.11)

show that we have control on all possible full conditional densities of the model as

they still preserve GMRF properties and therefore can still be bounded by Gaussian

densities. The same does not apply to the marginals π(xi|y) which are still bounded

by t-Student distributions. Non-normal latent field or likelihood assumptions add

complexity in approximating posterior marginals from these hierarchical structures.

However, the mixture representation of marginal posterior densities (2.56) entirely

depends on full conditionals as we integrate out all the hyperparameters. Therefore,
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both INLA parametric and non-parametric strategies will still give accurate marginal

results, provided (4.11) applies in a non Gaussian latent field. Although the example

allows interpretable posterior inference for a Student-t latent field, it still appears

impractical in a computational setting due to the high number of hyperparameters

in the model specification, which is equal to n.

4.2 Marginal Inference with an extended Simplified strategy

Both marginal and joint inference is possible in INLA by constructing accurate ap-

proximations to their respective posterior target. Chapter 2 goes through the details

behind INLA methodology and its approximation strategies, while Chapter 3 gives

insights on how to extend the user’s toolbox to make inferences on joint posterior

distributions as well. The INLA strategies provide different approaches for approx-

imating the posterior marginal distributions of Latent Gaussian Model parameters

using parametric and non-parametric assumptions depending on the user’s needs.

When the Gaussian argument of Section 4.1 holds for a normal likelihood, the Gaus-

sian Approximation strategy is the fastest and most accurate amongst all. Instead, if

the posterior truth is heavily skewed and accuracy is an issue, the full Laplace strat-

egy provides more on-point approximations in a non-parametric way. However, the

best deal is given by the Simplified Laplace strategy, which offers faster but slightly

more inaccurate approximations fitting Skew Normal densities. In most cases, the

inaccuracies of this strategy compared to the full Laplace one are negligible. This

section of the thesis proposes boosting the Simplified Laplace accuracy by employing

Extended Skew Normal distributions. Section 4.2.2 also underlines that such Skew

Normal family densities naturally satisfy the appealing Gaussian bounds and tail be-

havior for Latent Gaussian Models. The extension enables the strategy to produce

more accurate posterior outcomes while avoiding any additional computational cost.
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4.2.1 The Extended Skew Normal distribution and its prop-

erties

In more extreme settings, the Gaussian assumptions may not be enough to model

the observed data properly. The true posterior marginal distributions can be heavily

skewed, and the approximations computed by INLA may not accurately detect their

pattern. The R-INLA software efficiently accomplishes this task by modeling the

observed skewness through the third moment of a Skew Normal distribution which

is adapted on a third-order expansion of the Laplace approximation. While Skew

Normal distributions can approximate the marginals through the Simplified Laplace

strategy (see Section 2.5.3), the respective joint posterior density can be approximated

by a Skew Gaussian Copula (see Section 3.1). Concerning marginal inference in INLA,

we will show that a further extension of the Simplified strategy can model even more

skewed results. The idea is to employ a fourth-order expansion and fit an Extended

Skew Normal distribution, which still belongs to the Skew Normal family and satisfies

similar properties (see Azzalini and Capitanio (1999) for more distributions in the

Skew Normal family). We introduce some basic definitions and properties of this

extended version of the Skew Normal distribution. We define T ∼ ESN(ξ, ω, α, τ) to

be an Extended Skew Normal random variable where its probability density function

is

f(t; ξ, ω, α, τ) =
1

ωΦ(τ)
φ
(t− ξ

ω

)
Φ
(
τ
√
α2 + 1 + α

t− ξ
ω

)
(4.12)

with location parameter ξ, scale ω, skewness parameter α and hidden mean parameter

τ (or truncation parameter as mentioned in Canale (2011); Azzalini and Capitanio

(2018)) while φ(·), Φ(·) are respectively the probability and cumulative density func-

tion of a standard Gaussian. If τ = 0 then the equation in (4.12) reverts back to

a Skew Normal distribution. Important is the cumulant generating function of T
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defined as

K(u) = logM(u) = ξu+
1

2
ω2u2 + C0(τ + δωu)− C0(τ) (4.13)

with M(u) = E[euT ] being the moment generating function with parameterization

δ = α√
1+α2 and C0(z) = log 2Φ(z). Through the use of K(t), it is straightforward to

compute the first four moments

E(T ) = ξ + C1(τ)ωδ

Var(T ) = ω2[1 + C2(τ)δ2]

γ1(T ) =
C3(τ)δ3

(1 + C2(τ)δ2)3/2

γ2(T ) =
C4(τ)δ4

(1 + C2(τ)δ2)2
(4.14)

with γ1, γ2 being the standardized skewness and kurtosis. The C(·) functions provide

a simpler formulation for the expressions in (4.14) in terms of τ . Indeed, Azzalini

and Capitanio (2018) shows that

Cr(τ) =
∂r

∂τ r
log 2Φ(τ) (4.15)

with the first derivatives up to order r = 5 being
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C1(τ) =
φ(τ)

Φ(τ)

C2(τ) = −[C1(τ)]2 − τC1(τ)

C3(τ) = −τC2(τ)− 2C1(τ)C2(τ)− C1(τ)

C4(τ) = −τC3(τ)− 2C2(τ)− 2C2
2(τ)− 2C1(τ)C3(τ)

C5(τ) = −3C3(τ)− τC4(τ)− 6C2(τ)C3(τ)− 2C1(τ)C4(τ) (4.16)

We recover Skew Normal constants when τ = 0. From the C function formulation,

we see that C1(0) =
√

2
π
, C2(0) = − 2

π
, C3(0) =

√
2
π

(4−π)
π

and C4(0) = − 24
π2 + 8

π

which appear in the respective Skew Normal moments. Additionally, we can observe

interesting patterns of these C functions in terms of τ values. From Figure 4.1 we get

the following

• C1(τ) has a linear pattern for negative values and quickly decays to zero as τ

approaches zero towards the positive range side

• C2(τ) assumes values in the range (−1, 0) and follows a logistic pattern

• C3(τ) assumes values in the range (0, 0.3) and resembles a proper probability den-

sity function

• C4(τ) assumes values in the range (−0.2, 0.1) and quickly decays to zero as τ < −1

and τ > 4

In particular, the function C3 approximately satisfies all the required properties of a

probability density function, the range is positive and the respective integral is close

to one. Numerical integration shows that the integral is 0.9991876 with absolute error

less than 8.1e-05 for values of τ within the range [-35, 35]. This simplifies the required

implementation of the Extended Skew Normal distribution into the Simplifed strategy
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as we observe no additional benefit in considering large values of τ (see Section 4.2.5

for insights on this matter). Both parameter τ and the C function patterns make the

Extended Skew Normal distribution appealing for better modeling skewed posterior

outcomes when using the Simplified Laplace strategy.

Figure 4.1: Plotting C functions of an Extended Skew Normal distribution up to order
four with respect to the τ parameter with range values [−10, 10].

On another note, we can also obtain a closed expression for the parameterization δ

from (4.14) as follows

δ = sign(γ1)

√
|γ1|2/3

[C3(τ)]2/3 − C2(τ)|γ1|2/3
(4.17)

Moments can be used to construct accurate mappings to the parameters distribution,

as we have seen for the Skew Normal density in Chapter 3. The same cannot be

accomplished for the Extended Skew Normal distribution as there are two evident
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issues:

• if we substitute equation (4.17) into the kurtosis one in (4.14), its resulting expres-

sion in terms of τ does not have a closed form solution

• the kurtosis is unbounded as its range is [0,∞) and this can lead to numerical

issues or unreasonable outcomes as we do not have control on its range values

In the next sections we show that it is way easier and more efficient to follow a

similar scheme adopted for the Simplified Laplace strategy by fitting Skew Normal

distributions.

4.2.2 Tail behavior in the Skew Normal family densities

The Gaussian argument in Section 4.1 points out that a nearly Gaussian pattern can

properly approximate the posterior marginals of a Latent Gaussian Model up to a

constant. Skew Normal family densities are then appealing for the task since they

naturally extend Gaussian densities by also modeling asymmetries. As the Simplified

Laplace strategy in INLA provides accurate and fast approximations by using Skew

Normal densities, we need to make sure that these distributions satisfy such Gaussian

properties together with its extended version. Hence, we first consider log densities

of a standard Skew Normal and Extended Skew Normal distribution

log fSN(x;α) = log(2) + log(φ(x)) + log(Φ(αx))

= log(2) + log(φ(x)) + log
(1

2
+

1

2
erf
(αx√

2

))
log fESN(x;α, τ) = − log(Φ(τ)) + log(φ(x)) + log(Φ(αx+ τ

√
1 + α2))

= − log(Φ(τ)) + log(φ(x)) + log
(1

2
+

1

2
erf
(αx+ τ

√
1 + α2

√
2

))
(4.18)
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with erf(x) = 2√
π

∫ x
0

exp(−z2) dz being the error function. Although Gaussian bound-

aries are straightforward when considering that Φ(p) ≤ 1 for p ∈ (−∞,∞), we need

to check the tail behavior as well. Tails represent indeed an important aspect of the

distribution as they model extreme observations. For accuracy purposes, we need

to make sure that the Skew Normal family expressions in (4.18) show a similar

tail Gaussian pattern. We can verify this aspect by computing series expansions

of both log densities for the limiting cases x → ±∞. An asymptotic expansion of

the log Gaussian density φ(x) is straightforward and consists of one squared term.

Skew Normal family densities add more complexity because of the Φ(·) function term.

Asymptotic expansion results for both Skew Normal family density tails are provided

below, where we use ν = τ
√

1 + α2. The results for the right tail are

log fSN(x;α)|x→+∞ ≈ −
1

2
x2 + exp

(
−α

2x2

2

)(
−1

2

√
2

αx
√
π

+ . . .
)

log fESN(x;α, τ)|x→+∞ ≈ −
1

2
x2 + exp

(
−α

2x2

2
− ναx

)(
−1

2

√
2 exp(−1

2
ν2)

√
παx

+ . . .
)

(4.19)

while for the left tail we have

log fSN(x;α)|x→−∞ ≈ −
1

2
x2(1 + α2) + log

(
− 1

αx
√

2π

)
+ . . .

log fESN(x;α, τ)|x→−∞ ≈ −
1

2
(α2 + 1)x2 + νx+ log

(
−1

2

√
2 exp(−1

2
ν2)

αx
√
π

)
+ . . .

(4.20)

The expanded results in (4.19) show a sequence of higher-order terms that quickly

approach zero as x→ +∞. The right tail of both Skew Normal and Extended Skew

Normal density gets more and more similar to the one expected from a Gaussian
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distribution. Corresponding left tail results (4.20) for x→ −∞ show a similar Gaus-

sian pattern but with a slower decay. We can also recognize a log Gaussian density

contribution with additional logarithmic terms coming from the expanded cumula-

tive density Φ(αx). Skew Normal family densities appear to be a natural choice for

approximating Latent Gaussian posterior marginals as accurately as possible when

outcomes slightly deviate from a Gaussian pattern.

4.2.3 Expanding the target posterior up to third order

This section offers a step by step description of the Simplified Laplace strategy, ini-

tially introduced in Chapter 2. First, we focus on the default approach, which con-

structs Skew Normal approximations based on the target distribution’s third-order

Taylor expansion. While going through the methodology, we also derive and apply

a new way to compute an exact mode for the Skew Normal density by avoiding al-

ternative approximations (see also Wood (2020)). Then we move on to the details

of our new proposed extension using Extended Skew Normal distributions and how

to get solutions efficiently. The default strategy consists of fitting a Skew Normal

distribution to a third order Taylor expanded density of the form

log(π(z)) = K − 1

2
z2 + µ̃z +

1

3!
γ̃1z

3 + . . . (4.21)

where K is a constant, (µ̃, γ̃1) are terms derived from the third order Taylor expansion

of the Laplace Approximation evaluated at each Gaussian Approximation mean. The

resulting density in (4.21) is N(µ̃, 1) up to second order while the third term γ̃1

provides information of the third order derivative evaluated at the mode. We consider

R ∼ SN(ξ, ω, α) with unknown location ξ, scale ω and skewness parameter α. Then

we define a system of three equations to compute the respective parameter triplet

(ξ̃, ω̃, α̃) to approximate the target density in (4.21). By matching the first two non

central moments and the third derivative of the Skew Normal at the mode z∗, the
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resulting system is

E(R) = µ̃

Var(R) = 1

∂3

∂r3
log π(r; ξ, ω, α)

∣∣∣
r=z∗

= γ̃1 (4.22)

However the mode z∗ is not analytically available. From Appendix B in Rue et al.

(2009), we can expand log π(r; ξ, ω, α) at its location point r = ξ to compute an

approximation to the mode as

r∗ =
(α
ω

)√2π + 2ξ
(
α
ω

)
π + 2

(
α
ω

)2 (4.23)

We evaluate the third derivative of the log Skew Normal density at the approximated

mode (4.23). To allow an exact analytical result and fast computations, we consider a

C function form of the third log derivative as ∂3

∂r3
log π(r; ξ, ω, α) = C3

(
α
ω

(r− ξ)
)(

α
ω

)3

and expand this expression at α
ω

around α = 0. Only the third order term of the

expansion is not zero and equal to 6C3(0). This results is then used to get the last

equation of the system. But we can also compute the Skew Normal modal con-

figuration through an interpolant between skewness and third log derivative results

almost exactly. Figure 4.2 shows that the interpolation curve of these quantities is

smooth and provides more precise results for the Skew Normal parameters. In most

cases, we do not detect significant improvements but the new approach still makes the

Simplified Laplace approximations slightly more accurate when non-negligible skew-

ness is involved. Additionally, it simplifies the default INLA methodology avoiding

computations for solving the system of equations.
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Figure 4.2: The curve describes the exact relation of skewness and log third derivative
evaluated at the exact mode of a standard Skew Normal random variable for many
possible values of skewness in the range (-1,1). The modes are computed by numerical
optimization for maximum accuracy purposes.

Then we obtain the third equation in the system (4.22) as

γ̃1 = C3(0)
(α
ω

)3

(4.24)

where the right side is exactly the resulting polynomial expansion of ∂3

∂r3
log π(r; ξ, ω, α)

∣∣∣
r=r∗

with C3(·) being the C function formulation derived from the Extended Skew Normal

distribution. Using equation (4.24), we can directly solve the system (4.22) since α is

a function of the sole scale parameter ω with C3(0) being a constant (≈ 0.218). The

solutions we get from the system are unique and exact and lead to fast Skew Normal

approximations of the target distribution.

4.2.4 Expanding the target posterior up to fourth order

The target density in (4.21) revolves around a third order expansion but more terms

can be considered. We can indeed extend the Simplified Laplace methodology by

fitting an Extended Skew Normal distribution, introduced in Section 4.2.1, to a fourth
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order expansion of the same target distribution. Similarly, we will need to solve a

system of four equations since the new distribution has an additional parameter τ .

The corresponding log density of (4.12) can be written in a C function formulation as

log f(t; ξ, ω, α, τ) = log
[ 1

ω
φ
(t− ξ

ω

)]
+ C0

(
τ
√

1 + α2 + α
t− ξ
ω

)
− C0(τ) (4.25)

If τ = 0 the extended log density in (4.25) degenerates into a Skew Normal one.

Moreover, the role of the hidden mean parameter becomes irrelevant when α = 0

as the density reverts back to a Gaussian distribution with mean ξ and variance ω2.

From Seijas-Macias et al. (2017) and Azzalini and Capitanio (2018), we know that τ

affects both skewness and kurtosis of the distribution when α is not zero. For this

case we need log derivatives up to order four for the system

∂

∂t
log f(t; ξ, ω, α, τ) = −t− ξ

ω2
+ C1

(
τ
√

1 + α2 +
α

ω
(t− ξ)

)α
ω

∂2

∂t2
log f(t; ξ, ω, α, τ) = − 1

ω2
+ C2

(
τ
√

1 + α2 +
α

ω
(t− ξ)

)(α
ω

)2

∂3

∂t3
log f(t; ξ, ω, α, τ) = C3

(
τ
√

1 + α2 +
α

ω
(t− ξ)

)(α
ω

)3

∂4

∂t4
log f(t; ξ, ω, α, τ) = C4

(
τ
√

1 + α2 +
α

ω
(t− ξ)

)(α
ω

)4

(4.26)

Similar to the Skew Normal case, we do not have an analytical solution for the mode

due to the intractable structure of the first log derivative in (4.26). Therefore we must

rely on an expansion of the third log derivative at t = ξ getting the new approximated

mode

t∗ =
(α
ω

)C1(τ
√

1 + α2)− C2(τ
√

1 + α2)ξ
(
α
ω

)
1− C2(τ

√
1 + α2)

(
α
ω

)2 (4.27)
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which reverts back to (4.23) as τ = 0. For this case, the interpolation shown in

Figure 4.2 is challenging as we now need to match skewness with two free parameters.

Therefore we decide to apply the modal approximation above which is still numerically

accurate. Another existing numerical approximation for the mode is provided in

Azzalini and Capitanio (2018) by using the centralized moments of Skew Normal

family densities. Next we expand the third and fourth log derivatives of the Extended

Skew Normal distribution at the mode (4.27) with respect to α
ω

around α = 0. The

results we get are the following

∂3

∂t3
log f(t; ξ, ω, α, τ)

∣∣∣
t=t∗
≈ C3(τ)

(α
ω

)3

∂4

∂t4
log f(t; ξ, ω, α, τ)

∣∣∣
t=t∗
≈ C4(τ)

(α
ω

)4

(4.28)

that are available as functions of the scale parameter ω, the skewness parameter α

and the hidden mean parameter τ . The final system of equations is obtained by

matching the first two moments of the Extended Skew Normal random variable and

its higher-order expanded log derivatives in (4.28) as follows

ξ + ωδC1(τ) = µ̃

ω2(1 + C2(τ)δ2) = 1

C3(τ)
(α
ω

)3

= γ̃1

C4(τ)
(α
ω

)4

= γ̃2 (4.29)

with (γ̃1, γ̃2) being the third and fourth log derivatives evaluated at the mode derived

from the target approximated posterior in (4.21). Finally we compute the solutions

of the respective parameters by solving the system (4.29). However, we do not have a
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straightforward access to a unique solution due to the two last non linear equations in

τ . For the sake of efficiency, we construct an interpolant on τ to match its solutions

with the equations in a reasonable range.

4.2.5 Computing τ solutions by interpolation

The Extended Skew Normal distribution can be another natural parametric choice

for computing posterior marginals through the Simplified Laplace approach in INLA.

The resulting system of equations (4.21) is hard to solve exactly. Therefore, we

choose to work on a single expression depending on τ and construct an interpolant of

its solutions. If we combine the last two equations of the system, we get the following

γ̃2

[γ̃1]4/3
=
C4(τ)

[C3(τ)]4/3
(4.30)

which heavily depends on high-order C functions. However we can see from Figure

4.3 that there exists a smooth behavior between the τ values and respective solutions

of the ratio appearing on the right side of equation (4.30). Such one-to-one relation

can be encoded into an interpolant without relying on more costly non-linear solvers

(see nleqslv R package, for example).
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Figure 4.3: Relationship between the hidden mean parameter τ and the C function
derivative ratio C4(τ)

[C3(τ)]4/3
obtained from 4.30.

The interpolant ensures accurate and fast solutions within reasonable boundaries for

τ . The derivative ratio is positively bounded from above as follows

−∞ <
C4(τ)

[C3(τ)]4/3
< 2.4 with −∞ < τ <∞ (4.31)

which again underlines the Gaussian convergence bounds of the Extended Skew Nor-

mal distribution when τ → ±∞. In particular, Canale (2011) shows that these

limiting Gaussian cases are N(ξ, ω2) for τ → ∞ and N(−α|τ |, 1√
1−δ2 ) for τ → −∞.

From Figure 4.1 we have seen that C3(τ) can approximately recover a probability den-

sity function with respect to the parameter τ . This pattern is useful for constructing

a criterion that only picks reasonable solutions of τ with respect to the log derivative

outcomes (γ̃1, γ̃2). As a rule of thumb, we establish that a |τ | > 10 value is already
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far extreme and can lead to unlikely or unstable results produced by the interpolant.

Such range leads to a probability space coverage equal to
∫ 10

−10
C3(τ) dτ ≈ 0.99 which is

wide enough for our purposes. Moreover, a low value of γ̃1 results in an unreasonable

ratio outcome of 4.31 for the corresponding interpolant. When γ̃1 approaches zero,

the Extended Skew Normal density bends to a Gaussian one and the new approach

gets unstable. All possible instabilities that can arise from an extreme solution of the

system or an inaccurate interpolation are resolved by reverting back to the original

Simplified Laplace approach in Section 4.2.3. In general, the resulting interpolant

is accurate and does not add computational costs to the strategy. By solving the

derivative ratio in (4.30), we can finally get solutions for the system of equations.

Assuming γ̃1 is not zero, we write a∗ = C3(τ̃) where τ̃ is the result obtained by the

interpolant as a solution of (4.30). We write the skewness parameter as α̃ = ω̃b∗ with

b∗ = ( γ̃1
a∗

)1/3 and get

ω̃ =

√
−d∗ +

√
(d∗)2 + 4c∗

2c∗
(4.32)

where c∗ = (b∗)2(1 + C2(τ̃)) and d∗ = 1− (b∗)2. If τ̃ approaches 0 then we revert to a

Skew Normal system of equations. Here we know that the location ξ̃ is given by

ξ̃ = µ̃− ω̃δ̃C1(τ̃) (4.33)

where δ̃ = α̃√
1+α̃2 . The last expression (4.33) gives the respective location parameter

solution for the Extended Skew Normal system.

4.3 Posterior analysis using the Simplified Laplace strategy

Marginal posterior inference is particularly fast and accurate for hierarchical models

within the class of Latent Gaussian Models when INLA is used. Section 4.1 discusses

how Gaussian assumptions on the latent field positively affect the computed approx-
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imations by forcing the posterior marginal densities to be accurately represented by

Gaussian-like distributions. Both Simplified Laplace and full Laplace strategies are

up to the task, with the latter being more accurate at the cost of some speed perfor-

mance. In Ruli and Ventura (2016); Ruli et al. (2016) we can find more improvements

to these approximations depending on the modeling application. A new direction for

improving the Laplace Approximation sees the use of Variational Bayes corrections

to the posterior mean (see van Niekerk and Rue (2021)). Section 4.2 proposes a new

extension for the Simplified Laplace strategy to improve the accuracy of the results

when the posterior marginals are heavily skewed. Instead of relying on Skew Normal

approximations, we use Extended Skew Normal distributions, which still belong to

the Skew Normal family and satisfy similar properties. Since this new strategy shines

in contexts where the posterior marginals of the model are skewed, we again consider

hierarchical formulations for Poisson and Binomial likelihood models by simulating

datasets with different sample sizes and one single covariate with Gaussian prior to

account for high marginal skewness. We then compare the posterior marginal results

from each model by using the strategies in INLA and the Markov Chain Monte Carlo

approach in JAGS (Plummer et al. (2003)). More in detail, the INLA strategies are

the Simplified (SLA), the full Laplace (LA), and the Extended Simplified Laplace

(ESLA).

4.3.1 Simulation Results

Here we show simulations for both Binomial and Poisson likelihoods focusing on

different sample size dimensions denoted by n. This simulation setting allows to get

skewed posterior marginals and shows less extreme patterns as soon as the sample

size increases. For large values of n, we expect to observe a more prevalent Gaussian

behavior in the posterior outcomes. The results for the two model scenarios are

reported in the plots below with increasing order of n. Marginal outcomes of the
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Binomial setting are in Figure 4.4, 4.5, 4.6 and 4.7 while the Poisson ones are shown

in Figure 4.8, 4.9, 4.10 and 4.11. For low sample size n, we see that the ESLA

strategy provides more accurate results around the mode. The full Laplace (LA)

and MCMC methods report the most accurate results and do not differ in practice.

ESLA posterior results appear closer to LA and MCMC than SLA strategy, where

the mode is far off the more correct location. All employed strategies tend to show

similar results as soon as the sample size n gets larger, with ESLA being slightly

more accurate. A summary of the posterior modal configurations for different sample

sizes is given on Tables 4.1 and 4.3, while interquartile ranges (IQR) are reported in

Table 4.2 and 4.4. These simulations underline that ESLA strategy is preferable in

more extreme settings where the skewness is high, especially around the mode. The

extended methodology also preserves robustness as it is forced to revert to a standard

Simplified strategy in less extreme cases.

Figure 4.4: Comparative results between SLA (black line), LA (red line), ESLA (blue line) and
MCMC (green line) strategies with n = 1 observations and a Bernoulli likelihood. Extreme negative
skewness setting with minimum sample size. Since LA and MCMC strategies embody the posterior
truth, we can observe that the SLA approach shows way less accuracy around the mode than its
extended version denoted by ESLA. Tail behavior is similar for both SLA and ESLA and still appears
to be slightly inaccurate in the left direction.



136

Figure 4.5: Comparative results between SLA (black line), LA (red line), ESLA (blue line) and
MCMC (green line) strategies with n = 10 observations and a Bernoulli likelihood. Extreme positive
skewness setting with small sample size. Since LA and MCMC strategies embody the posterior truth,
we can see that the SLA approach shows way less accuracy around the mode than its extended version
ESLA. Tail behavior is similar for both SLA and ESLA and still appears to be moderately inaccurate
in the right direction.
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Figure 4.6: Comparative results between SLA (black line), LA (red line), ESLA (blue line) and
MCMC (green line) strategies with n = 50 observations and a Bernoulli likelihood. Extreme positive
skewness setting with moderate sample size. All employed strategies for this application show similar
results except for the SLA methodology, which appears to be more inaccurate around the mode.
Still, both SLA and ESLA suffer minor deviations in the right tail compared to LA and MCMC
truth.
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Figure 4.7: Comparative results between SLA (black line), LA (red line), ESLA (blue line) and
MCMC (green line) strategies with n = 100 observations and a Bernoulli likelihood. High positive
skewness setting with enough large sample size. All employed strategies for this application show
similar results with minor deviations around the mode given by the SLA methodology. Large sample
sizes tend to provide more stable expected results no matter the approximation strategy we use. Still,
ESLA strategy is much closer to the true posterior results than SLA.
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Figure 4.8: Comparative results between SLA (black line), LA (red line), ESLA (blue line) and
MCMC (green line) strategies with n = 1 observations and a Poisson likelihood. Extreme negative
skewness setting with minimum sample size. Since LA and MCMC strategies embody the posterior
truth, we can observe that the SLA approach shows way less accuracy around the mode than its
extended version denoted by ESLA. Unlike the Binomial case, tail behaviors for both SLA and ESLA
closely match with no evident differences.
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Figure 4.9: Comparative results between SLA (black line), LA (red line), ESLA (blue line) and
MCMC (green line) strategies with n = 5 observations and a Poisson likelihood. Extreme positive
skewness setting with small sample size. Since LA and MCMC strategies embody the posterior
truth, we can see that the SLA approach shows way less accuracy around the mode than its extended
version ESLA. Unlike the Binomial case, tail behaviors for both SLA and ESLA closely match with
no evident differences.



141

Figure 4.10: Comparative results between SLA (black line), LA (red line), ESLA (blue line) and
MCMC (green line) strategies with n = 10 observations and a Poisson likelihood. High negative
skewness setting with small sample size. All employed strategies for this application show similar
results except for the SLA methodology, which appears to be more inaccurate around the mode.
Still, both SLA and ESLA suffer minor deviations in the left tail compared to LA and MCMC truth.

Figure 4.11: Comparative results between SLA (black line), LA (red line), ESLA (blue line)
and MCMC (green line) strategies with n = 50 observations and a Bernoulli likelihood. Moderate
negative skewness setting with enough large sample size. All employed strategies for this application
closely converge to the same posterior result with no evident difference. Large sample sizes tend to
provide more stable expected results no matter the approximation strategy we use.
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Table 4.1: Binomial simulations for increasing sample sizes up to n = 100 and poste-
rior mode evaluations using SLA, ESLA, LA and MCMC strategies. For low sample
sizes, the modes derived from ESLA strategy are closer to the true ones from LA and
MCMC approaches than the default SLA strategy. As the sample size n increases,
we notice a decreasing pattern for the positive skewness sequence (apart from n = 1),
with the mode values converging to the same result for all strategies. Overall, ESLA
provides more coherent results to LA and MCMC, confidently representing the truth.

n Skew Mode(SLA) Mode(ESLA) Mode(LA) Mode(MCMC)
1 -0.578 -8.979 -14.528 -16.581 -17.249
2 0.644 0.346 0.783 1.084 0.995
5 0.627 1.17 1.764 1.844 1.914
10 0.495 1.207 1.39 1.459 1.363
20 0.451 0.639 0.722 0.784 0.764
50 0.306 0.908 0.934 0.964 0.94
100 0.218 0.85 0.862 0.881 0.876

Table 4.2: Binomial simulations for increasing sample sizes up to n = 100 and poste-
rior interquartile range (IQR) evaluations using SLA, ESLA, LA and MCMC strate-
gies. The IQRs from both SLA and ESLA strategies get closer and closer to the truth
provided by LA and MCMC posterior results as soon as the sample size increases.
Although the difference is less relevant than the one from the respective mode in Ta-
ble 4.1, ESLA grants more accurate results towards the truth than its simpler version
SLA.

n Skew IQR(SLA) IQR(ESLA) IQR(LA) IQR(MCMC)
1 -0.578 25.865 26.909 28.73 28.949
2 0.644 2.046 2.138 2.838 3.012
5 0.627 2.316 2.4 2.751 2.80
10 0.495 1.189 1.232 1.313 1.31
20 0.451 0.755 0.78 0.813 0.816
50 0.306 0.468 0.477 0.483 0.483
100 0.218 0.365 0.37 0.372 0.372
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Table 4.3: Poisson simulations for increasing sample sizes up to n = 100 and posterior
mode evaluations using SLA, ESLA, LA and MCMC strategies. For low sample sizes,
the modes derived from ESLA strategy are closer to the true ones from LA and MCMC
approaches than the default SLA strategy. As the sample size n increases, we notice
a decreasing pattern for the negative skewness sequence (apart from n = 2), with the
mode values converging to the same result for all strategies. Overall, ESLA provides
more coherent results to LA and MCMC, confidently representing the truth.

n Skew Mode(SLA) Mode(ESLA) Mode(LA) Mode(MCMC)
1 -0.446 0.972 0.905 0.87 0.886
2 0.496 -2.696 -2.195 -2.06 -1.87
5 -0.322 1.882 1.85 1.822 1.814
10 -0.311 0.796 0.78 0.767 0.763
20 -0.223 0.992 0.983 0.973 0.969
50 -0.179 1.109 1.106 1.103 1.108
100 -0.113 1.033 1.032 1.03 1.026

Table 4.4: Poisson simulations for increasing sample sizes up to n = 100 and posterior
interquartile range (IQR) evaluations using SLA, ESLA, LA and MCMC strategies.
The IQRs from both SLA and ESLA strategies get closer and closer to the truth
provided by LA and MCMC posterior results as soon as the sample size increases.
Although the difference is less relevant than the one from the respective mode in Table
4.3, ESLA grants more accurate results towards the truth than its simpler version
SLA.

n Skew IQR(SLA) IQR(ESLA) IQR(LA) IQR(MCMC)
1 -0.446 0.598 0.618 0.64 0.644
2 0.496 3.588 3.717 3.936 3.92
5 -0.322 0.492 0.5 0.5 0.5
10 -0.311 0.251 0.256 0.256 0.257
20 -0.223 0.224 0.227 0.227 0.227
50 -0.179 0.092 0.093 0.093 0.093
100 -0.113 0.082 0.083 0.083 0.083

4.4 Discussion

This last chapter of the thesis discussed how we could further extend the available

Simplified Laplace strategy in INLA by considering more higher-order derivatives in

the expansion and using a suitable parametric fit. Extended Skew Normal densi-

ties appeared to enhance the approximation strategy by modeling observed skewed

outcomes more accurately than using Skew Normal distributions. As part of the
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Skew Normal family, these extended distributions also satisfied the Gaussian bounds

and tail properties discussed throughout Section 4.1. However, their four-parameter

mathematical formulation was hard to handle as we could not achieve exact analyt-

ical solutions, unlike the Skew Normal setting. We solved this issue by constructing

an interpolant for the hidden mean parameter solutions τ . To keep computations

stable, we decided to bound the range of acceptable solutions with a well-defined

rule of thumb. The whole approach was still computationally competitive towards

its default implemented counterpart in the strategy while providing more accurate

results around the mode. The new extended approach is flexible as it can quickly

reproduce default method outcomes when inaccuracies or instabilities happen Canale

(2011); Azzalini and Capitanio (2018). It also showed encouraging improvements in

the simulation results consistent with the ones produced by the full Laplace strategy,

which opens a new path of possibilities. Alternative skewed family distributions may

be used to achieve even more accurate results to avoid using more costly strategies.

Throughout this project, we also questioned if it could have been possible to en-

code the Extended Skew Normal distribution into the Skew Gaussian Copula class of

Chapter 3 to improve the joint posterior inference as well. In Section 4.2.1 we already

introduced a first reason why this could not be feasible in practice due to the lack of

kurtosis bounds and mapping difficulties. This work has shown that Latent Gaussian

assumptions allow us to easily extend INLA strategies as they do not impose too strict

restrictions on the nature of approximations we can use. Parametric approximations

are appealing from a computational perspective, but they are more likely to fail in

recovering an exact truth in more extreme settings.
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Chapter 5

Concluding Remarks

5.1 Summary

Marginal posterior inference broadly represents the main focus when applying statis-

tical analyses from a Bayesian perspective. In the class of Latent Gaussian Models,

we obtain fast and empirically accurate approximations of these marginals by using

the Integrated Nested Laplace Approximation (INLA) computational approach Rue

et al. (2009), which bypasses sampling-based methods, like the most used and well-

known Markov Chain Monte Carlo algorithms. This thesis extensively avails of the

INLA methodology to outline new advancements toward software development when

tackling Bayesian joint and marginal problems that show extremely skewed patterns.

After introducing some theoretical background and numerics behind the vast R-INLA

methodology in Chapter 2, we start digging out possibilities to construct joint poste-

rior approximations to enable a fast and accurate joint inference in Latent Gaussian

Models, especially for non-Gaussian likelihoods. In Chapter 3 we introduce the new

class of Skew Gaussian Copula joint approximation densities applied onto the full

conditional posterior density of the latent field. By definition, we construct marginal

Skew Normal transformations wrapped in a Gaussian Copula field structure to en-

code skewness adjustments within the approximated posterior outcomes. This class

expands the R-INLA approximation toolkit box when the analysis revolves around

joint inference, mainly when we deal with non-Gaussian behavior. Manipulation of

a mixture of Skew Gaussian Copula densities across its moment’s computations con-
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tributes to fastly approximate posterior densities for marginals and linear additive

combinations in a subset of the latent field (see Appendix C for an application in R-

INLA). Later, we exploit the same mixture representation and an exact Monte Carlo

sampling scheme onto the hyperparameter set to approximate the whole joint poste-

rior density of a Latent Gaussian Model. This sampling version of the approximation

is much more accurate and generally works for any mixed combination or functional

of the model’s parameters. In extreme frameworks where the likelihood contribution

is far from Gaussian, we observe improvements in the new class of joint approxi-

mations and its deterministic, faster manipulative derivations. Computations for the

Skew Gaussian Copula with marginal skewness adjustments can be heavy in extensive

settings with a more dense grid of hyperparameter configuration points. A parallel

approach amongst multiple cores may be preferable to avoid relevant slowdowns. In

Chapter 4 we first discuss the underlying Gaussian prior assumptions of the latent

field, showing that this pattern holds for both joint and marginal posterior densities

derived from the same field. Indeed, these densities are bounded by the product of a

Gaussian density and a constant, implying that extreme non-Gaussian assumptions

are not needed to properly retrieve the main bulk of the true density. Amongst the

available INLA strategies, the Simplified Laplace Approximation is the one that offers

the best computational deal, at the cost of some accuracy, by using some parametric

modeling fit. This strategy involves a Taylor expansion up to the third-order of full

Laplace approximations and then fits Skew Normal distributions to approximate the

true posterior densities parametrically. Approximation methodologies like INLA grow

in popularity as they ease Bayesian inference analysis by using accurate low or high-

order approximations. Related works towards this direction suggest that extensions

are possible and bring benefit to the overall approach Ruli et al. (2014); Ruli and Ven-

tura (2016); Ruli et al. (2016). On this topic, we propose to extend the parametric

assumptions of the Simplified Laplace strategy by fitting an Extended Skew Normal
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distribution to a fourth-order expansion. As we efficiently incorporate the additional

parameter of this extended distribution in the approach, we can accurately model

more extreme skewed outcomes into R-INLA. This thesis’s new developments enlarge

the software’s capabilities to tackle Bayesian problems within a marginal and joint

inference framework. Extreme observed skewed data behaviors now benefit from new

modeling assumptions that can recover the truth more accurately than previously

implemented features of the R-INLA program. Therefore, any user can exploit these

new corrected tools with a user-friendly interface to applications where data scarcity

or heavy asymmetric patterns affect the model.

5.2 Future Research Work

The advantages of the Skew Gaussian Copula class of approximation densities de-

scribed in Chapter 3 allow the resulting joint posterior object to having more accurate

corrected marginals for inference purposes. By combining a mixture of this class with

a Monte Carlo approach, we can also derive a full joint posterior approximation of the

model with computational cost proportional to the number of configuration points.

Even though the sampling scheme to achieve the approximation is exact, each Skew

Gaussian Copula density in the mixture must be evaluated for each pre-computed

grid configuration point. In many applications, this number of points results in being

minor, therefore not affecting the computations, but this can rapidly grow large if

the dimension of θ grows large or the grid is denser. In these settings, the com-

putational burden of these corrected joint posterior approximations becomes more

evident, and parallel strategies in terms of the configuration hyperparameter points

may be required. INLA constantly evolves by encoding more and more features to

deal with computational issues in contexts where the problems to solve are huge in

dimension (see PARDISO library in Schenk and Gärtner (2004)). Some internal par-

allel strategies are already part of the Skew Gaussian Copula implementation to limit



148

these possible slowdowns. Additionally, we believe that a more accurate parametric

assumption may be explored and used in the marginal transformations of the copula

structure. In Chapter 4 we propose an extension for the Simplified Laplace Approxi-

mation strategy in INLA that applies Extended Skew Normal approximations for the

posterior marginals of the model parameters. The idea could be further extended by

relying on more complex parametric skewed families that involve several parameters

to model their structure (Azzalini and Capitanio (1999)). If we can efficiently handle

the numerical operations behind the parametric fit, then any modeling assumption

is possible and can grant more accuracy in the results at no additional cost. As

Bayesian research and computational advancements move forward, INLA becomes

more and more appealing for statistical inference in many applied fields (biology,

economy, physics, environmental statistics, geoscience, and more) due to its fast and

streamlined features that now contain new tools to tackle extremely skewed data

observations both in a marginal and joint inference framework.
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stica, 40:123 – 140, 01 2017. ISSN 0120-1751. URL http://www.scielo.org.co/

scielo.php?script=sci_arttext&pid=S0120-17512017000100006&nrm=iso.

Stefano Peluso, Antonietta Mira, H̊avard Rue, Nicholas John Tierney, Claudio Ben-

venuti, Roberto Cianella, Maria Luce Caputo, and Angelo Auricchio. A bayesian

spatiotemporal statistical analysis of out-of-hospital cardiac arrests. Biometrical

Journal, 62(4):1105–1119, 2020.

Soraia Pereira, Kamil Feridun Turkman, Luis Correia, and H̊avard Rue. Unemploy-

ment estimation: Spatial point referenced methods and models. Spatial Statistics,

41:100345, 2021.

Kem Phillips. R functions to symbolically compute the central moments of the mul-

tivariate normal distribution. Journal of Statistical Software, 33, 07 2010. doi:

10.18637/jss.v033.c01.

Martyn Plummer et al. Jags: A program for analysis of bayesian graphical models us-

ing gibbs sampling. In Proceedings of the 3rd international workshop on distributed

statistical computing, volume 124, pages 1–10. Vienna, Austria., 2003.

Z. Quiroz, M. O. Prates, and H. Rue. A Bayesian approach to estimate the biomass

of anchovies in the coast of Perú. 71(1):208–217, 2015.
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APPENDICES

A The Gaussian Approximation

In Chapter 2 we introduced the Integrated Nested Laplace Approximation (INLA),

which offers many approximation strategies to perform marginal posterior inference.

For Gaussian likelihood models, the most accurate and fast is the Gaussian Approx-

imation which is generally applied to densities of the form

π(x|y,θ) ∝ exp
(
−1

2
xTQx+

∑
i∈I

gi(xi)
)

(A.1)

where Q is the precision matrix of the latent field x depending on hyperparameters θ

while I is an index set for data observations y. By Latent Gaussian Model structure,

the functions gi(xi) refer to the log-likelihood densities log{π(yi|xi,θ)}. The Gaussian

Approximation is obtained by matching the modal configuration and the curvature

at the mode of π(x|y,θ). This task is accomplished iteratively by using optimization

methods like Newton-Raphson or Quasi-Netwon methods. We first apply a Taylor

expansion up to second order on gi(xi) around an initial guess µ
(0)
i and approximate

the target functions gi(xi) as

gi(xi) ≈ gi(µ
(0)
i ) + bixi −

1

2
cix

2
i (A.2)

where (bi, ci) are constants related to µ
(0)
i in terms of the polynomial approximation.

In the update step of the process, the new precision matrix becomesQG = Q+diag(c)

with the modal configuration computed as the solution of the linear system QGµ
(1) =
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b. Then we continue the iterative update loop until we converge to a Gaussian distri-

bution with, say, final mean µ∗ and final precision matrix Q∗ = Q+ diag(c∗). These

quantities summarize the Gaussian Approximation π̃G(x|y,θ) of (A.1), which result

in a multivariate Gaussian distribution denoted as N(µ∗,Q∗). Markov conditional

properties of the Gaussian Markov Random Field (GMRF) structure of x (see Section

2.3) are preserved since the functions gi(xi) do not involve mixed product terms.

B R Codes to fit GLMMs in JAGS and INLA

Here we provide R language implementations using JAGS for the Markov Chain

Monte Carlo strategy and INLA approach to fit a pair of Generalized Linear Mixed

Models with Poisson and Binomial likelihood. Below, we propose implementing the

Poisson model leaving the Binomial to the reader as few changes are needed. Both

MCMC and INLA simulation approaches run in parallel on multiple system cores.

#load R2jags l i b r a r y

require ( R2jags )

#Poisson model JAGS

model . Poi <− function ( ) {

for ( i in 1 :N) {

y [ i ] ˜ dpois (mu[ i ] )

log (mu[ i ] ) <− alpha + re [ grps [ i ] ]
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}

for ( j in 1 :M) {

re [ j ] ˜ dnorm(0 , tau )

}

alpha ˜ dnorm(0 , 0 . 001 )

tau ˜ dgamma( 0 . 1 , 0 . 1 )

sd <− 1/sqrt ( tau )

}

#MCMC run in JAGS

mod . j a g s <− j a g s . p a r a l l e l (data = c ( ”y” , ” grps ” , ”N” , ”M” ) ,

n . cha ins = 20 ,

n . i t e r = 6000000 ,

n . burnin = 1000000 ,

n . th in = 100 ,

parameters=c ( ”mu” , ” alpha ” , ” re ” , ” tau” ) ,

i n i t s=l i s t ( l i s t ( alpha = 1 ,

re = rep (0 , M) ,

tau = 1 . 5 ) ) ,

model . f i l e = model . Poi )$BUGSoutput

#Dataframe f o r Poisson data in INLA

df . Poi <− data . frame (y , grps )
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#INLA Poisson se tup

mod . Poi <− i n l a ( y ˜ 1 + f ( grps , hyper = l i s t (

prec = l i s t ( p r i o r = ”loggamma” ,

param = c ( 0 . 1 , 0 . 1 ) ,

i n i t i a l = log ( 1 . 5 ) ) ) ) ,

data = df . Poi ,

family = ” po i s son ” ,

control . p r e d i c t o r = l i s t ( compute = TRUE) ,

control . compute = l i s t ( c o n f i g = TRUE,

return . marg ina l s . p r e d i c t o r = TRUE) ,

control . f i x e d = l i s t (mean . i n t e r c e p t = 0 ,

prec . i n t e r c e p t = 0 .001 )

)

In this setting, we remark the user friendly implementation of the model setup in

INLA compared to the respective one in JAGS. The control options control.predictor

= list(...) and control.compute = list(...) in the inla main function call

are mandatory for computing both the hyperparameter configuration points and the

posterior linear predictor marginals of the model. The computed points allow to

construct the joint posterior approximation π̃(x,θ|y) formulated in Chapter 3. This

joint object is straightforward in R-INLA as we simply need to use the function

inla.posterior.sample while MCMC strategies already compute an approximation

for the joint posterior density by default.

samples = 1e04

j o i n t . i n l a = i n l a . p o s t e r i o r . sample (n = samples ,

r e s u l t = mod . Poi ,
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skew . co r r = TRUE)

The INLA function above constructs a joint posterior approximation of the Pois-

son model by drawing 104 independent samples to represent it properly. The sam-

pling scheme is exact since we draw samples from a correct empirical approximation.

The option skew.corr = TRUE enables the marginal skewness correction adjustments

specifying that we are using the Skew Gaussian Copula formulation in (3.35). Some

historical background on the function. It officially came out in 2013 as an INLA

extension to approximate joint posterior densities by combining pre-existing features

of the original implementation. The code was first created for the purpose of com-

pleting the excursion project on Latent Gaussian Models appeared on Bolin and

Lindgren (2015) and Bolin and Lindgren (2018) within the R excursions package.

This task was an easy hack, as the main work was mainly to store all grid configu-

rations and combine the feature with the Gaussian Markov Random Field sampling

function inla.qsample. This function became available starting May 2012 and was

necessary for the joint project by David Bolin and Finn Lindgren. Some tutorials on

this joint INLA posterior sampler can be found in Krainski et al. (2018) and Mar-

tino and Riebler (2019) which accurately explain how to derive and interpret correct

functionals of the results for prediction purposes.

C Linear Combinations with R-INLA

In Section 3.2 we introduced how to construct joint posterior approximations for a

set of linear combinations Ax where A is a matrix of indexes and x is the latent

field of a Latent Gaussian Model. We exploit a surrogate Skew Gaussian Copula and

its moments to derive linear combinations as marginals of the joint object. A Skew

Normal distribution approximates each marginal. The new R-INLA tools that allow
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to construct these new approximations are encoded in the functions inla.tjmarginal

and inla.1djmarginal. These functions apply a fast post-process of the main INLA

output after fitting the model of interest. The R code below shows an example by

constructing approximations for two linear additive combinations in a Poisson model

with three covariates.

# Poisson r e g r e s s i o n d a t a s e t ( s i m u l a t i o n )

nn = 50

p = 3

x1 <− rnorm(nn )

x2 <− rnorm(nn )

x3 <− rnorm(nn )

eta = 1+x1+x2+x3

y = rpois (nn , lambda = exp( eta ) )

data = data . frame ( y = y , x1 = x1 , x2 = x2 , x3 = x3 )

s e l = l i s t ( ’ ( I n t e r c e p t ) ’= 1 , x1 = 1 , x2 = 1 , x3 = 1)

# F i t t i n g the data i n t o an INLA framework

mod . ex <− i n l a ( y ˜ 1+x1+x2+x3 ,

family = ” po i s son ” ,

data = data ,

s e l e c t i o n = se l ,

control . compute = l i s t ( c o n f i g = TRUE) )
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# Gett ing d e t e r m i n i s t i c approximat ions from the SGC o b j e c t

Lin . idx = matrix ( c (0 , 1 , 1 , 0 , 0 , 1 , 1 , 1 ) ,

nrow = 2 , ncol = p+1, byrow = T)

Lin . idx

[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ]

[ 1 , ] 0 1 1 0

[ 2 , ] 0 1 1 1

mod . det = i n l a . t jmarg ina l ( jmarg ina l = mod . ex$ s e l e c t i o n ,

A = Lin . idx )

$names

[ 1 ] ”Lin : 1 ” ”Lin : 2 ”

$mean

[ , 1 ]

[ 1 , ] 1 .971917

[ 2 , ] 3 .013960

$cov . matrix

[ , 1 ] [ , 2 ]

[ 1 , ] 0 .002613337 0.002072906

[ 2 , ] 0 .002072906 0.004420322
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$skewness

[ 1 ] 0 .06482934 0.03272285

dm = i n l a . 1 djmarg ina l ( jmarg ina l = mod . det )

# Plot the d e t e r m i n i s t i c r e s u l t s

plot (dm$ ‘ Lin : 1 ‘ , type = ’ l ’ )

plot (dm$ ‘ Lin : 2 ‘ , type = ’ l ’ )

Through the selection list option in the main INLA function call, we can extract all

the moments and correlation structure of the parameters of interest, here provided by

the three model covariates x1, x2 and x3. We focus on getting posterior approxima-

tions for the two specified linear combinations x1 +x2 and x1 +x2 +x3 from the joint

posterior structure of the model. First, we use the new function inla.tjmarginal

to construct the surrogate Skew Gaussian Copula object structure with its moments

and correlation matrix amongst the two linear combinations whose indexes belong to

Lin.idx. Then we use the new function inla.1djmarginal to compute Skew Normal

approximations for π(x1 + x2|y) and π(x1 + x2 + x3|y). The results can be compared

to the ones obtained from the sampling-based joint posterior approximation encoded

in inla.posterior.sample function (see Appendix B for an application). More ex-

amples, insights of these new functions can be found on the tutorial vignette available
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on the R-INLA official website.
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