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Abstract

In this extended abstract paper, we address the
problem of interpretability and targeted regular-
ization in causal machine learning models. In
particular, we focus on the problem of estimat-
ing individual causal/treatment effects under ob-
served confounders, which can be controlled for
and moderate the effect of the treatment on the out-
come of interest. Black-box ML models adjusted
for the causal setting perform generally well in
this task, but they lack interpretable output identi-
fying the main drivers of treatment heterogeneity
and their functional relationship. We propose a
novel deep counterfactual learning architecture
for estimating individual treatment effects that can
simultaneously: i) convey targeted regularization
on, and produce quantify uncertainty around the
quantity of interest (i.e., the Conditional Average
Treatment Effect); ii) disentangle baseline prog-
nostic and moderating effects of the covariates
and output interpretable score functions describ-
ing their relationship with the outcome. Finally,
we demonstrate the use of the method via a simple
simulated experiment1.

1. Introduction
In the past years, there has been a growing interest towards
applying ML methods for causal inference. Disciplines
such as precision medicine and socio-economic sciences in-
evitably call for highly personalized decision making when
designing and deploying policies. Although in these fields
exploration of policies in the real world through random-
ized experiments is costly, in order to answer counterfactual
questions such as “what would have happened if individual
i undertook medical treatment A instead of treatment B”
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one can rely on observational data, provided that the con-
founding factors can be controlled for. Black-box causal
ML models proposed in many recent contributions perform
remarkably well in the task of estimating individual coun-
terfactual outcomes, but significantly lack interpretability,
which is a key component in the design of personalized treat-
ment rules. This is because they jointly model the outcome
dependency on the covariates and on the treatment variable.
Knowledge of what are the main moderating factors of a
treatment can unequivocally lead to overall better policy
design, as moderation effects can be leveraged to achieve
higher cumulative utility when deploying the policy (e.g.,
by avoiding treating patient with uncertain or borderline
response, better treatment allocation on budget/resources
constraints, ...). Another main issue of existing causal ML
models, related to the one of interpretability, is carefully de-
signed regularization (Nie & Wager, 2020; Hahn et al., 2020;
Caron et al., 2022b). Large observational studies generally
include measurements on a high number of pre-treatment
covariates, and disentangling prognostic2 and moderating
effects allows the application of targeted regularization on
both, that avoids incurring in unintended finite sample bias
and large variance (see (Hahn et al., 2020) for a detailed
discussion on Regularization Induced Confounding bias).
This is useful in many scenarios where treatment effect is
believed to be a sparser and relatively less complex function
of the covariates compared to the baseline prognostic effect,
so it necessitates carefully tailored regularization.

1.1. Related Work

Among the most influential and recent contributions on ML
regression-based techniques for individualized treatment
effects learning, we particularly emphasize the work of
(Johansson et al., 2016; Shalit et al., 2017; Yao et al., 2018)
on deep learning models, (Alaa & van der Schaar, 2017;
2018) on Gaussian Processes, (Hahn et al., 2020; Caron
et al., 2022b) on Bayesian Additive Regression Trees, and
finally the literature on the more general class of Meta-
Learners models (Künzel et al., 2017; Nie et al., 2020). We
refer the reader to (Caron et al., 2022a) for a detailed review
of the above methods.

2Prognostic effect is defined as the baseline effect of the covari-
ates on the outcome, in absence of treatment.
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X

A Y

X = fX(εX)

A = fA(X, εA)

Y = fY (X, A) + εY

Figure 1. Causal DAG and set of structural equations describing
a setting that satisfies the backdoor criterion. The underlying
assumption is that conditioning on the confounders X is sufficient
to identify the causal effect A → Y . Models generally assume
mean-zero additive error term for the outcome equation. The red
arrow in the DAG represent the moderating effect of X in the
A → Y relationship.

In particular we build on top of contributions by (Nie et al.,
2020; Hahn et al., 2020; Caron et al., 2022b), that have pre-
viously addressed the two issues of targeted regularization
in causal ML. Our work proposes a new deep architecture
that can separate baseline prognostic and treatment effects,
and, by borrowing ideas from recent work on Neural Addi-
tive Models (NAMs) (Agarwal et al., 2021), a deep learn-
ing version of Generalized Additive Models, can output
interpretable score functions describing the impact of each
covariate in terms of their prognostic and treatment effects.

2. Problem Framework
In this section we briefly introduce the main notation setup
for causal effects identification and estimation under ob-
served confounders scenarios, by utilizing the framework of
Structural Causal Models (SCMs) and do-calculus (Pearl,
2009). We assume we have access to data of observational
nature described by the tuple Di = {Xi, Ai, Yi} ∼ p(·),
with i ∈ {1, ..., N}, where Xi ∈ X is a set of covariates,
Ai ∈ A a binary manipulative variable, and Yi ∈ R is the
outcome. We assume then that the causal relationships be-
tween the three variables are fully described by the SCM
depicted in Figure 1, both in the forms of causal DAG and
set of structural equations. Notice in particular that we as-
sume, in line with most of the literature, zero-mean additive
error structure for the outcome equation. The ultimate goal
is to identify and estimate the Conditional Average Treat-
ment Effects (CATE), defined as the effect of intervening
on the manipulative variable Ai, by setting equal to some
value a (or do(Ai = a in the do-calculus notation), on the
outcome Yi, conditional on covariates Xi (i.e., conditional
on patient’s characteristics, ...). In the case of binary Ai,
CATE is defined as:

CATE: τ(xi) = E[Yi | do(Ai = 1),Xi = x]

− E[Yi | do(Ai = 0),Xi = x] . (1)

In order to identify the quantity in (1) we make two stan-
dard assumptions. The first assumption is that there are

no unobserved confounders — or equivalently in Pearl’s
terminology, that Xi satisfies the backdoor criterion. The
second assumption is common support, which states that
there is no deterministic selection into either of the treat-
ment arms conditional on the covariates, or equivalently that
p(Ai = 1|Xi = x) ∈ (0, 1), ∀i. The latter guarantees that
we could theoretically observe data points with Xi = x in
each of the two arms of A. Under these two assumptions,
we can identify CATE τ(xi) in terms of observed quantities
only, replacing the do-operator in (1) with the factual Ai, by
conditioning on Xi:

E[Yi|do(Ai = a),Xi = x] = E[Yi|Ai = a,Xi = x] .

Once CATE is identified as above, there are different ways
in which it can be estimated in practice. We will briefly
describe few of them in the next section.

3. Targeted CATE estimation
Very early works in the literature on CATE estimation pro-
posed fitting a single model f̂Y (Xi, Ai) (S-Learners). The
main drawback of S-Learners is that they are unable to ac-
count for any group-specific distributional difference, which
becomes more relevant the stronger the selection bias is.
Most of the subsequent contributions instead suggested
splitting the sample into treatment subgroups and fit sep-
arate, arm-specific models f̂Ya

(xi) (T-Learners). While
T-Learners are able to account for distributional variation
attributable to Ai, they are less sample efficient, prone to
CATE overfitting and to regularization induced confounding
bias (Künzel et al., 2017; Hahn et al., 2020; Caron et al.,
2022b). Finally some of the most recent additions to the
literature (Hahn et al., 2020; Nie et al., 2020; Caron et al.,
2022b) proposed using (Robinson, 1988) re-parametrization
of the outcome function, which reads:

Robinson: Yi = µ(xi) + τ(xi)Ai + εi , (2)

where µ(xi) = E[Yi | do(Ai = 0),Xi = x] is the
prognostic effect function and τ(xi) is the CATE func-
tion as defined in (1). The distinctive trait of Robinson’s
parametrization is that the outcome function explicitly in-
cludes the function of interest, i.e. CATE τ(xi), while in
the usual S- or T-Learner (and subsequent variations of
these) parametrizations CATE is implicitly obtained post-
estimation as τ̂(xi) = f̂1(xi) − f̂0(xi). This means that
(2) is able to differentiate between the baseline prognos-
tic effect µ(xi) (in absence of treatment) and moderating
effects embedded in the CATE function τ(xi), of the co-
variates. As a consequence, by utilizing (2), one can convey
different degree of regularization when estimating the two
functions. This is particularly useful as CATE is usually
believed to display simpler patterns than µ(xi); so by esti-
mating it separately, one is able to apply stronger targeted
regularization.
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Ly(µ(x) + τ(x)a, y)

µ(·)

τ(·)

Figure 2. Intuitive TCNN structure. The deep architecture is mod-
elled through a sample efficient, tailored loss function based on
Robinson’s parametrization.

3.1. Interpretable Causal Neural Networks

Following (Robinson, 1988), and the more recent work by
(Nie et al., 2020; Hahn et al., 2020; Caron et al., 2022b), we
propose a very simple deep learning architecture for inter-
pretable and targeted CATE estimation, based on Robinson
parametrization. The architecture is made of two separa-
ble neural nets blocks that respectively learn the prognostic
function µ(xi) and the CATE function τ(xi), but are “re-
connected” at the end of the pipeline to minimize a single
loss function, unlike T-Learners which instead minimize
separate loss functions on f1(·) and f0(·). Our target loss
function to minimize is generally defined as follows:

min
µ(·),τ(·)

Ly
(
µ(x) + τ(x)a, y

)
, (3)

where Ly(·) can be any standard loss function (e.g., MSE,
negative log-likelihood,...). Through its separable block
structure, the model allows the design of different NN archi-
tectures for learning µ(·) and τ(·) while preserving sample
efficiency (i.e., avoiding sample splitting as in T-Learners),
and to produce uncertainty measures around CATE τ(·) di-
rectly. Thus, if τ(·) is believed to display simple moderating
patterns as a function of Xi, a shallower NN structure with
less hidden layers and units, and more aggressive regulariza-
tion (e.g., higher regularization rate or dropout probabilities),
can be specified, while retaining higher level of complexity
in the µ(·) block. We generally refer to this model as Tar-
geted Causal Neural Network (TCNN) for simplicity from
now onwards. Figure 2 provide a simple visual represen-
tation. While in this work we focus on binary intervention
variables Ai for simplicity, TCNN can be easily extended
to multi-category Ai by adding extra blocks to the structure
in Figure 2.

In addition to the separable structure, and in order to guar-
antee higher level of interpretability on prognostic and mod-
erating factors, we also propose using a recently developed
neural network version of Generalized Additive Models
(GAMs), named Neural Additive Models (NAMs) (Agarwal
et al., 2021), as the two µ(·) and τ(·) NN building blocks
of TCNN. We refer to this particular version of TCNN as
Interpretable Causal Neural Network (ICNN). Contrary to

normal NNs, which fully “connect” inputs to every nodes in
the first hidden layer, NAMs “connect” each single input to
its own NN structure and thus outputs input-specific score
functions, that fully describe the predicted relationship be-
tween each input and the outcome. NAM’s score functions
have an intuitive interpretation as Shapley values (Shapley,
1953): how much of an impact each input has on the final
predicted outcome. The NAM architecture in ICNN allows
us to identify and estimate the Shapley values for each co-
variates as prognostic µ(·) and/or moderating τ(·) effects,
and quantify uncertainty around them as well. Naturally, the
downside of NAMs is that they might miss out on interaction
terms among the covariates. These could possibly be con-
structed and added manually as additional inputs, although
this is not particularly convenient nor computationally ideal.

We conclude the section by highlighting similarities and
differences between TCNN (and ICNN) and other popular
methods employing Robinson’s parametrization. Differ-
ently than R-Learner (Nie et al., 2020), TCNN is not a
multi-step plug-in (and cross-validated) estimator and does
not envisage the use of propensity score. Instead, simi-
larly to Bayesian Causal Forest (BCF) (Hahn et al., 2020;
Caron et al., 2022b), estimation in TCNN is carried out in
a single, more sample efficient step, although BCF is in-
herently Bayesian and relatively computationally intensive.
To obtain better coverage properties in terms of uncertainty
quantification in both TCNN and ICNN, we implement the
MC dropout technique (Gal & Ghahramani, 2016) in both
µ(·) and τ(·) blocks to perform approximate Bayesian in-
ference, that is, we re-sample multiple times from the NN
model with dropout layers to build an approximate poste-
rior predictive distribution. This produces credible intervals
around CATE estimates τ(·) in a very straightforward way,
and, in ICNN specifically, credible intervals around each
inputs’ score function, as we will show in the experimental
section.

4. Experiments
We hereby present results from a simple simulated exper-
iment on CATE estimation, to compare TCNN and ICNN
performance against some of the state of the art methods. In
addition, we demonstrate how ICNN with MC dropout in
particular can be employed to produce highly interpretable
score function measures, fully describing the estimated mod-
erating effects of the covariates xi in τ(·), and uncertainty
around them. For performance comparison we rely on the
root Precision in Estimating Heterogeneous Treatment Ef-
fects (PEHE) metric (Hill, 2011), defined as:√

PEHEτ =
√
E
[
(τ̂i(xi)− τi(xi))2

]
, (4)

and the list of models we compare include: S-Learner ver-
sion of NNs (S-NN); T-Learner version of NNs (T-NN);
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Model Train
√

PEHEτ Test
√

PEHEτ

S-NN 1.046 ± 0.007 1.076 ± 0.007
T-NN 1.021 ± 0.002 1.074 ± 0.002

R-CF 1.467 ± 0.002 1.494 ± 0.002
R-NN 0.706 ± 0.003 0.712 ± 0.003
R-NAM 0.787 ± 0.002 0.787 ± 0.002

TCNN 0.361 ± 0.001 0.362 ± 0.001
ICNN 0.328 ± 0.001 0.331 ± 0.001

Table 1. Performance on simulated experiment, measured as 70%-
30% train-test set

√
PEHEτ . Bold indicates better performance.

Causal Forest (Wager & Athey, 2018), a particular type
of R-Learner (R-CF); a “unique-block”, fully connected
NN that uses Robinson’s parametrization minimizing the
loss function in (3) (R-NN); a “unique-block” NAM, again
minimizing the loss function in (3) (R-NAM); our TCNN
with fully connected NN blocks; and ICNN. S-NN, T-NN
and R-NN all feature two [50, 50] hidden layers. R-NAM
features two [20, 20] hidden layers for each input. TCNN
features two [50, 50] hidden layers in the µ(·) block, and
one [20] hidden layer in the τ(·) block. ICNN features two
[20, 20] hidden layers in the µ(·) block, and one [50] hidden
layer in the τ(·) block, for each input.

We simulate N = 2000 data points on P = 10 correlated
covariates, with binary Ai and continuous Yi. The exper-
iment was run for B = 100 replications and results on
70%-30% train-test sets average

√
PEHEτ , plus 95% Monte

Carlo errors, can be found in Table 1. The full description
of the data generating process utilized for this simulated ex-
periment can be found in the appendix Section A. NN mod-
els minimizing the Robinson loss function in (3) perform
considerably better than S- and T-Learner baselines on this
particular example, especially TCNN and ICNN that present
the additional advantage of conveying targeted regulariza-
tion. Considering the ICNN model only, we can then access
the score functions on the τ(·) NAM block that describe
the moderating effects of the covariates xi. In particular
in Figure 3 we plot the score function of the first covariate
Xi,1 on CATE τ(·), plus the approximate Bayesian credible
intervals generated through MC dropout resampling (Gal
& Ghahramani, 2016). In this specific simulated example,
CATE function is generated as τ(xi) = 3 + 0.8X2

i,1. So
only Xi,1, out of all P = 10 covariates, drives the simple
heterogeneity patterns in treatment response across individ-
uals, in a quadratic form. As Figure 3 shows, ICNN is able
in this example to learn a score function that very closely
approximates the underlying true relationship 0.8X2

i,1, and
quantifies uncertainty around it. Naturally, in a different
simulated setup with strong interaction terms among the
covariates, performance of ICNN would inevitably deteri-
orate compared to the other versions of NN and models

3 2 1 0 1 2 3

0

2

4

6

8

CATE Covariate X1
Estimated
True
MC bands

Figure 3. Score function output from ICNN model relative to co-
variate X1, depicting its moderating effect on CATE, plus MC
dropout generated credible intervals.

considered here. Thus, performance and interpretability in
this type of scenario would certainly constitute a trade-off.

5. Conclusion
In this extended abstract paper, we have addressed the is-
sue of interpretability and targeted regularization in causal
machine learning models for the estimation of heteroge-
neous/individual treatment effects. In particular we have
proposed a novel deep learning architecture (TCNN) that
is able to convey regularization and quantify uncertainty
when learning the CATE function, and, in its ICNN version,
to output interpretable score function describing the esti-
mated prognostic and moderation effects of the covariates
Xi. Finally, we have briefly demonstrated the use of TCNN
and ICNN by comparing their performance against some
of the popular methods for CATE estimation on a simple
simulated experiment, where we have also illustrated how
score functions are very intuitive and interpretable measures
for moderation effects analysis.
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A. Data Generating Process
In this appendix section we briefly describe the data generating process utilized for the simulated experiment in Section 4. We
generatedN = 2000 data points on P = 10 correlated covariates, of which 5 continuous and 5 binary, drawn from a Gaussian
Copula CGauss

Θ (u) = ΦΘ

(
Φ−1(u1), . . . ,Φ−1(uP )

)
, where the covariance matrix is such that Θjk = 0.1|j−k|+ 0.1I(j 6= k).

The data generating process is fully described by the following quantities:

µ(xi) = 6 + 0.3 exp(Xi,1) + 1X2
i,2 + 1.5|Xi,3|+ 0.8Xi,4 ,

τ(xi) = 3 + 0.8X2
i,1 ,

π(xi) = Λ
(
−1.5 + 0.5Xi,1 +

νi
10

)
,

Ai ∼ Bernoulli
(
π(xi)

)
,

Yi = µ(xi) + τ(xi)Ai + εi , where εi ∼ N (0, σ2) ,

(5)

where: Λ(·) is the logistic cumulative distribution function; the error’s standard deviation is σ2 = 0.5; and νi ∼
Uniform(0, 1). More details on the DGP and the models employed can be found at https://github.com/
albicaron/ICNN, for full reproducibility.
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