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Abstract

School-based sampling has been used to inform targeted responses for malaria
and neglected tropical diseases. Standard geostatistical methods for mapping
disease prevalence use the school location to model spatial correlation, which
is questionable since exposure to the disease is more likely to occur in the
residential location. In this paper, we propose to overcome the limitations of
standard geostatistical methods by introducing a modelling framework that
accounts for the uncertainty in the location of the residence of the students.
By using cost distance and cost allocation models to define spatial accessi-
bility and in absence of any information on the travel mode of students to
school, we consider three school catchment area models that assume walk-
ing only, walking and bicycling and, walking and motorized transport. We
illustrate the use of this approach using two case studies of malaria in Kenya
and compare it with the standard approach that uses the school locations to
build geostatistical models. We argue that the proposed modelling frame-
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work presents several inferential benefits, such as the ability to combine data
from multiple surveys some of which may also record the residence location,
and to deal with ecological bias when estimating the effects of malaria risk
factors. However, our results show that invalid assumptions on the modes
of travel to school can worsen the predictive performance of geostatistical
models. Future research in this area should focus on collecting information
on the modes of transportation to school which can then be used to better
parametrize the catchment area models.

Keywords: catchment area models, disease mapping, school, school survey,
missing locations, model-based geostatistics, prevalence

1. Background

In low resource settings, the prevalence of parasitic infections are im-
portant indicators to guide control. Surveys are traditionally undertaken
among sampled residents in communities or from fixed locations that serve
these communities, such as schools. School-based sampling has been used
for decades in Sub Saharan Africa (SSA) to inform the targeted responses
for helminth (Hodges et al., 2011; Tchuem Tchuenté et al., 2012; Soares Ma-
galhaes et al., 2011), schistosomiasis (Hodges et al., 2011; Tchuem Tchuenté
et al., 2012; Soares Magalhaes et al., 2011; Knowles et al., 2017; Fornace
et al., 2020; Clements et al., 2006) and malaria (Gitonga et al., 2010; Brooker
et al., 2009; Ashton et al., 2015; Mathanga et al., 2015) control. School-
based surveys for parasitic diseases represent convenient and cost-effective
sampling strategies to provide local disease information, where school at-
tendance is high, and infections can be asymptomatic (Ashton et al., 2011;
Brooker et al., 2009; Drake et al., 2011; Mathanga et al., 2015; Stevenson
et al., 2013; Takem et al., 2013). Sample school surveys can be powered to
provide estimates of malaria prevalence at geographical units (e.g., districts)
used for decision making. For example, targeting certain districts with high
malaria prevalence. More commonly, the lack of statistical power from min-
imally sampled schools has involved the applications of model-based geosta-
tistical (MBG) methods (Diggle et al., 1998), using aggregated information
at sampled school locations to provide information at unsampled locations
(Soares Magalhaes et al., 2011; Fornace et al., 2020; Clements et al., 2006;
Ashton et al., 2011).

MBG methods for disease mapping have become an established set of



modern and robust statistical tools (Diggle et al., 1998) that are used to
inform disease control strategies (Macharia et al., 2018; Biggeri and Catelan,
2012), especially in low-resource settings where disease registries are non
existent or incomplete (Alegana et al., 2020; Pop et al., 2019; Stefan et al.,
2014). Typically, MBG for disease prevalence mapping aim to predict a
disease risk surface using data consisting of a finite set of locations z;, for
1 =1,...,N, where a number of n; individuals are tested for a disease of
interest and of which y; test positive. Ideally, the x; would correspond to the
locations where individuals contracted the disease but, in practice, this is
often difficult, if not impossible, to assess and access. In most geostatistical
analyses of epidemiological data, the location of the school or village is used
as the main location of exposure to the disease of interest.

However, in most school malaria surveys, due to resource constraints, pre-
cise spatial information on the residence of the children is rarely collected.
Only the geographical location of the school is collected, hence the uncer-
tainty in the household location of the children within a school catchment
area. Consequently, when mapping malaria prevalence using school survey
data, the school location is often used as the exposure location due to missing
spatial information on the residential location. For example, in Ashton et al.
(2015), Binomial geostatistical models are fitted to serological indicators col-
lected from school surveys, while using the location of the school to define
the spatial correlation between observations. The same approach has been
used in other studies that have combined school-based data with community-
based data (Macharia et al., 2018; Runge et al., 2020). In Stensgaard et al.
(2011), the problem of the use of the school locations to estimate covariates
effects on prevalence is alleviated by averaging the covariates within 1 km
around each school location. However, this approach is questionable, since
it implicitly assumes a circular school catchment area with a radius of 1km
while still making use of the school location in the computation of the spatial
correlation.

A common problem to these approaches is that, by allocating individuals
to locations that are less representative of their actual exposure to malaria,
it can potentially bias the spatial structure of the MBG model and thus
invalidate the predictive inferences on prevalence. This is especially im-
portant for school going children since a bite from an infected Anopheles
mosquito is more likely to occur during night, when children are usually at
home (Maxwell et al., 1998).

The statistical problem addressed in this paper is related to the problem



that arises in passive surveillance when dealing with spatially aggregated dis-
ease counts; see for example Cameron et al. (2021). In Sturrock et al. (2014),
aggregated case data reported at health facility are modelled by defining the
probability of observing a case at any given location as the product of being
a case and the probability that individual would seek treatment. However, in
this work the random effects that modulate the probability of being a case are
modelled as a spatially discrete process that is tied to the specific definition
of the hospital catchment areas. The fine scale predictions of prevalence in
this case, are thus a product of spatially continuous covariates and spatially
discrete random effects. In this paper, we overcome this limitation by adopt-
ing a spatially continuous random effect whose properties are independent
of the catchment areas. However, one key difference between the problem
addressed in this paper and previous work on aggregated counts at health
facilities, is that the latter problem is more naturally addressed using spatial
point patterns methods. In other words, if locations were fully observed, a
Log-Gaussian Cox process (LGCP) would be a natural modelling option to
model reported cases at health facilities, whilst in our case, the location is not
the object of interest, but rather the prevalence associated with that. Diggle
et al. (2013), using LGCPs, provide a principled solution for fine-scale map-
ping by modelling the spatially aggregated disease counts as the realization of
an aggregated spatially continuous stochastic process. As in Cameron et al.
(2021), the methods that have been developed in the context of spatially
aggregated passive surveillance data are based on log-linear models do not
provide a solution to the problem addressed in this paper. Nelli et al. (2020)
develop methods to combine passive and active surveillance data, however
the sampled locations of the latter are assumed to be observed.

To the best of our knowledge, no statistically rigorous solution has been
proposed to handle the problem of missing residence locations from malaria
school survey data in a geostatistical model. In this paper, we provide a first
solution to this problem and compare the predictive inferences on prevalence
resulting from this novel approach with standard statistical approaches that
use the school location to model the spatial correlation.

2. Methods: combining school catchment area models with geo-
statistical models

In this study, the set of residence locations X, unlike in standard geosta-
tistical analyses, must be treated as a random variable and a suitable dis-



tribution for this must first be defined. Once we have defined the statistical
model for X, we can use this to impute likely values for the unobserved resi-
dence locations of children and incorporate these into a geostatistical model
for disease prevalence. This process allows us to rigorously acknowledge the
uncertainty arising from from the missing residence locations in the predic-
tive inferences of disease prevalence. However, this begs the two following
questions: 1) what is a suitable model for X? 2) How to combine the model
for X with a geostatstical model for disease prevalence?

To answer these questions, our approach is to develop a marked Poisson
process for the unobserved residence locations, X, with marks corresponding
to each of the schools, and whose domain is restricted by a school catchment
area (SCA) model informed by several factors that affect travel (road net-
work, land use, protected areas, water bodies and travel speed). We then use
the resulting model for X to generate samples of locations and feed these into
a MBG model for disease prevalence. This approach presents several com-
putational issues which we address using an stochastic partial differential
equation (SPDE) approximation (Lindgren et al., 2011) for spatial Gaussian
processes.

We first introduce the framework for accounting for missing residence lo-
cations in the context of disease prevalence mapping which entails creating
school SCAs and generating samples of the most likely residential locations
X. This is then followed by the estimation of the model parameters and spa-
tial prediction of disease prevalence within a predefined geographical area of
interest. The application of the proposed modelling framework is illustrated
through two case studies of malaria mapping in Western Kenya using school
survey data.

2.1. Accounting for missing residence locations in a geostatistical model for
disease prevalence mapping

In this section, we formalize and provide a solution to the problem of how
to propagate the uncertainty in geostatistical models for prevalence mapping,
arising from the lack of residence locations in school survey data.

Let [-] be a shorthand notation for “the density function of the random
variable -”7. 'We then use X = {Xj,...,X,,} to denote the random variables
representing the set of unobserved residence locations, and Y = (Y1,...,Y},,)
for the observed individual-level binary outcomes indicating a positive (Y; =
1) or negative (V; = 0) test. Finally, let S = {S(z) : € R?} be an isotropic



and stationary Gaussian process with mean zero and covariance function
cov{S(z), S(a")} = o*p(u),u = [lz — /|-

Assuming that X and S are independent of each other, or in other words
assuming a non-preferential sampling design, the joint distribution of X, S
and Y can be written as

(X, 5, Y] = [X][S][Y]9, X] = [X][S][Y[S(X)] (1)

where S(X) = {S(z) : z € X} and [Y|S(X)] is a set of mutually independent
Bernoulli variables, i.e.

n

Y[s(X)] = [ [[vls(x)].

i=1

When residence locations X are observed, then [X] is irrelevant for draw-
ing inferences on S, and thus can be ignored. In our case, instead, because
of the missingess of X, the distribution [X] must be integrated out from the
likelihood function for the unknown vector of parameters 6, i.e.

10) =il = [ [ XIsIviseo)asax. 2)

where A C R? is our geographical region of interest.
To estimate 6 from 2 and draw predictive inferences on S, we then first
need to specify a model for the location process [X].

2.2. Modelling [X] using school catchment area models

To model the location process [X], we propose to generate a school catch-
ment area (SCA) based on travel time from the residence of children. The
SCA is then used as the boundary of the area from which we shall draw sam-
ples of the residence locations using population density information. More
specifically, an SCA is defined as the geographical area or zone around a
school that draws majority of the students (Macharia et al., 2021b). One ap-
proach is to use so-called gravity models to express the decreasing likelihood
of geographically accessing a school, as the distance or travel time to that
school increase (Guagliardo, 2004) and they have been used to model catch-
ment areas for healthcare planning (Macharia et al., 2017; Alegana et al.,



2012; Guagliardo, 2004). Hence, spatial accessibility of a residence location
x is defined as 5

a(xr) = — 3

=2 Feay ®

where: ¢; is a constant that expresses the capacity of a school placed at
location z;, and can, for example, be quantified by the number of teachers
in that school; f(z,z;) is the impedance (travel time) between locations z
and x;; v is a gravity decay coefficient, also referred to as the travel friction
coefficient.

Real SCAs vary in size according to the underlying population distribu-
tion, number of schools in the surrounding area, school capacity and other
school attractiveness factors. School attendance and geocoded residential
location X, when available, can be used to estimate the parameters in 3.
However, in the absence of such data, as in the scenario considered in this
paper, a feasible and useful alternative is to use cost distance to define the
spatial accessibility function a(z) and use optimization algorithms that allow
to identify an optimal route of travel to school. Based on this definition of
spatial accessibility, an SCA is then defined as the geographical area encom-
passing all locations closest, in terms of travel time, to that school than any
other school. The travel time to school is dependent on the speed of the mode
of travel to school which, in turn, is affected by several spatial layers, includ-
ing the road network that students travel on, land cover layer to represent
the travel impedance in spaces between the roads, and barriers to movement
comprising water bodies, flooded areas, and protected areas. Barriers are
considered impassable, except in the presence of a bridge where a road inter-
sects a barrier such as a river. To model the speed of the mode of transport
and identify the optimal route to school, we propose to use terrain-based
least-cost path distance calculation (Ray and Ebener, 2008) and geospatial
layers representing factors that affect travel to generate a travel time grid in-
dicating the time taken by a student to travel from their residential location
to the nearest school.

Each road class and land cover are assigned a mode of transport and travel
speed, which ideally are informed by observational data of schools attendance
behavior in a specific region. However, in low resource settings, such data
are rarely available (Macharia et al., 2021b) and a common alternative is the
review of literature in similar settings to assemble road speeds and modes
of transport in one or more travel scenarios. We provide details on the



parametrization of the speed functions for our study regions in Kenya, in
Section 3.2.

After generating a SCA, we spatially link this with a population den-
sity raster (Stevens et al., 2015) which is then used to sample residential
locations within the SCA. The population density rasters are constructed
through dasymetric techniques that redistributes national census population
counts from administrative units to high spatial resolution (e.g. 100 metres
m x 100 metres) (Mennis, 2009; Stevens et al., 2015). Let C denote the
area encompassed by the boundaries of a given SCA; we then generate sam-
ples X(jy = {z1(j),- .-, 2n()}, for j = 1,..., B for the unobserved residence
locations, X, by using a fine regular grid covering C' to approximate the
probability of sampling a location x € C, given by

A(x)
Jo Mu) du’

where A(z) denotes the population density at .

2.8. Approximating [S] and the likelihood function: from parameter estima-
tion to spatial prediction
The resulting Monte Carlo samples X(;), j = 1,..., B, obtained as de-
scribed in the previous section, are now used to approximate 2 as

L)~ [ 5D ISIVISCey)ds. (1)

To avoid the computation of B covariance matrices for each of the stimulated
samples X(;), we approximate S using a piece-wise linear approximation for
S(z). More specifically, we partition the study region A into a set of non-
intersecting triangles that share at most a common edge. For the generation
of the triangles we follow the approach outline in Section 2.2.2 of Krainski
et al. (2018).

We then approximate the spatial Gaussian process as

S(x) = bu(x) Wi (5)

where by (z) are basis functions and the Wy, for k = 1,...,m are Gaussian
random variables. Based on the created mesh, we then define the basis



functions by () using barycentric coordinates, in which the location of a point
is specified by reference to vertices of a triangle. It then follows that by(x)
takes a non-zero value whenever a point z falls inside a triangle identified by
the vertex associated with by (z) such that Y ;" bg(x) = 1; for more details
see Section 2.2.2 of Krainski et al. (2018). Following Lindgren et al. (2011), we
assume that W = (Wy,...,W,,) follows a zero-mean multivariate Gaussian
distribution with precision matrix (), which is chosen so as to approximate a
Matérn spatial field with smoothness parameter x = 1 and scale parameter
¢. Hence, we write

¢*°T' (k) ’ —4 -2
Q= (m) (077 C' + 20" "G + G2)
where C, G; and (5 are sparse matrices whose entries are non-zero only for
pairs of vertices that share the same triangles; for more details on how the
entries of C, G; and G5 are defined, we refer the reader to Lindgren et al.
(2011).

Let x;(;) denote the i-th element of X ;) for i = ..., n; following from 5, we
then define [Y'|W, X(;)] as a set of mutually independent Bernoulli variables
with linear predictor

paip) | _ o7 .
log {m} =d (z;)0 + ; br (i) ) Wi (6)

where d(z;)) is a vector of spatial covariates, recorded at location x(;), with
associated regression coefficients 3.

Let us split the vector of unknown parameters 6, into covariance param-
eters 1 = (02, ¢) of the spatial process and regression coefficients 3, and
reparametrize 4 based on W to give

L@~ [ Wl (éZ[YWX(j);B]) aw. (7)

Since the above integral is intractable, we use Monte Carlo methods to ap-
proximate the likelihood function as follows. Let ¥y and S, be our initial
guesses for the parameters ¢ and [, respectively. To simplify the notation
let g(Y,W; ) = Zle Y'|W, X(;)]/B; we then rewrite 7 as

o) ~ [ pvignwis)dw

9



D/’ W;¢0a60]
W3 lg(Y. WiB) iy,
> /Rm W wO}Q(Y,W;BO) (WY 500, Bo] dW
E, [ (W 4]g(Y, W; B)
7 Golg (Y, W o)

where Fj is the expectation taken with respect to the distribution of W, con-
ditional on Y, with parameters ¢y and y or, using the shorthand notation,
[W1Y; Bo, 1] Hence, we approximate 7, by sampling from [W|Y; Sy, 1]
using a Metropolis Hastings independence sampler with proposal distribu-
tion given by a multivariate Gaussian distribution with mean and covariance
matrix corresponding to the mode and inverse of the negative Hessian of
(W5 olg(Y, W By), respectively.

When the goal of the analysis is primarily focused on spatial predic-
tion and not on drawing inferences on [, the computational burden can
be alleviated by first estimating § using a simpler model that ignores spa-
tial correlation, which is obtained by setting S(x) = 0 for all x to give
log{p(z(j)/(1 — p(x(j))} = d'(x(j))B. The likelihood function of this non-
spatial model is given by

1 B n
:EZH P(zi)[1 — plai))]-

j=1 i=1

-/ a9 aw

(8)

After maximizing the above function with respect to 3, we obtain 8 which
we now plug-in into the linear predictor 6. This then leads to a simplified
likelihood function for the covariance parameters 1, expressed by

(9)

L) — By { Wy (Y, Wﬁ)] B { W] } |
[

W3 o)g(Y, W; B) [W; o)

By maximizing the above function, we finally obtain ¢ as our point estimate
of . Since the primary objective of our case study in predicting malaria
prevalence, we adopt this approach in our two applications.

Spatial prediction of prevalence is carried by plugging the point estimates
B and é into 6.

10



3. Application 1: large scale mapping of malaria prevalence across
eight counties of Western Kenya

3.1. Data

We analyse data from a national school-based survey of malaria preva-
lence conducted in 2009 in Kenya; full details of the survey are provided
elsewhere (Gitonga et al., 2010). Here, we consider 84 sampled public day
primary schools located in a high malaria transmission region of Western
Kenya, covering eight counties and 62 sub-counties close to Lake Victoria.
All eight counties had at least a school surveyed while 50 sub-counties (81%)
had at least a surveyed school (Figure 1). At each school approximately 100
children aged 4-22 years were randomly sampled from classes 2-6 for a total
of 9,103 children. The majority of the children (91%) were aged between
8 and 14 years while only 0.5% were aged at least 17 years. Each sampled
child provided a finger-prick blood sample that was used to detect Histadine
Rich Protein (HRP) as evidence of recent Plasmodium falciparum infection
using a rapid diagnostic test (RDT) (Paracheck-Pf device). Slides from all
RDT positive samples were examined using light microscopy and 10% of all
RDT negatives. A child was deemed positive for malaria when parasites
were detected on microscopy. The location of the school was recorded using
a hand-held Global Positioning System (GPS) device (Gitonga et al., 2010).

In addition to the malaria school survey data, a set of spatial covariates
were used to assist the spatial prediction of prevalence at unsampled loca-
tions. These are listed and described in Table 1. Before including these
covariates in our model, we explored the association of each of the covariates
listed in Table 1 by taking the empirical logit transformation (Stanton and
Diggle, 2013) of the total number of cases recorded at each school and plotted
this against each of the covariates, whose value on the x-axis was obtained
by taking its average within the SCAs.

11



(9707 ‘130ySuRy pue ojjesng)
SPLIS Uy 6z'0 ‘SIAOIN

(8461 ‘1Im( pue eyN( FTOZ T8 12 I00N) SIS SUIPaIq
soojmbsowr o[qemns jo soussard o) 10] Axoxd e se s10r UOIIRIOTOA

XOPUI UOT}RIIFOA
pooueyuy ¥

(L10T “Te 90 L10ARQ)
spuigd axenbs wiy T TIN

(LT0Z “Te 90 eLIRQRY]) SOIIIOR] [I[BAY] O SSO00R POSBAIOIUL

pue sojer Aj1ea0d poonpal ‘uornquiysip uorpendod ‘Ajarioe

RN [IIM PajeIdosse osfe are TN (L7107 T8 10 A10A%S) (TIN)
sYSI oS Aq porxoxd sem worpeziweqin “(L10g T8 30 elLIeqey|)
99eI UM pUR A}SUSP I0JIOA RLIR[RUIL PAONPAI O} NP SeaIr

[eanI 03 paredwion URQIN UL JoMO] A[[RNSN ST UOTJOJUT RLIR[R]A

uorjyeziueqip ¢

(GT0g “Te 90 Yunq)
spus ury G ‘SIUIHD

(8161 ‘1m( pue N FTOg “Te 12 I00N)
sofoydouy I0J SHULUWIUOIIAUS SUIPaaI( [eljuajod
sopraoxd seanjeroduio) JUSIqUIR S[RIINS [YIIM PIUIJUIOD [[RJUTRY

uorye3tdoaig
ugowl [enuuy ‘g

(9107 ‘myoySuey pue ojjesng)
SpUsS Wy 9°¢ ‘SIAOIN

(8861 ‘xneour[o]y) Auo8o1ods wn.indiopn) wnipowsn]J

10] wmuwrydo poIopIsuod oIe ) ()¢ pur ), Gg Uoomjaq soanjeroduo)
o[ym D, 0F Suryorordde sornjeroduwa) JULIqUIR Je SOSRIIOUL
seojmbsow seeydoue o1} Jo A[eI0lN (F00g ‘Aespur] pue yoseg)
sympe o[qera oonpoid 0} o[qeun oIe dRAIR] 9} ‘). 9T

ue() ssof sornjeroduro) ofiym ‘AJRIIOU [RAIR] 040)(] 1SOUI[R 0} prI[

0.7€ uey) 107e01d soinjeiodwo], ‘S}MPR 9[RIA OJUI dRAIR] WOIJ ammjerodwa,
wnapd12)n) " Jo YuewdO[oAdp pUR [RAIAINS o1} S}0oje oInjeloduwo], Ul [eNUUY ']
UOIIN[OSAI pUR DINOY uornydriosa(q 9JeLIBAO) )

"¢ TOT}IAG JO SISATRUE S} UI $9)BLILA0D A} Jo ATewruing :T 9[qe],

12



3.2. Model specification for [X]

We first assembled a list of all public day primary schools in 2009 (Mulaku
and Nyadimo, 2011) (Figure S1.1 in Supplementary material 1) and variables
representing factors that are known to affect travel (Table 2 and Figures S1.2
to S1.4 in Supplementary material 1) in order to define the speed of a specific
mode of travel at any location x of the study area (Figure 1). To compute
travel time, we used AccessMod (version: 5.7.3-alpha) (Ray and Ebener,
2008), an open-source package that models geographical access using terrain-
based least-cost path distance calculation (Ray and Ebener, 2008). We used
the 'merge land cover’ module of AccessMod to merge the land cover, road
network, water bodies, national parks and reserves, and obtain a 'merged
landcover’ raster at 100-meter resolution. Travel speeds were then assigned
to each land cover type and road class.

13
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School going children can use different transport modes to reach their
school. Since data on modes of travel were not available, we considered
three different models corresponding to travel scenarios based on different
assumptions for the means of transportation used by the children to reach
their school.

e Model W. It assumes that all students walk to school with speeds
ranging between 5 km/hr to 0 km/hr (Samimi and Ermagun, 2013;
Macharia et al., 2017; Mehdizadeh et al., 2017; Alegana et al., 2021) as
detailed in Table 3.

e Model WB. Travel to school is assumed to be a combination of walking
and bicycling with a maximum speed of 10km/hr for bicycles.

e Model WM. Travel to school is assumed to be combination of walking
and motorized transport (motorcycles, private and public vehicles).
The maximum motorised speed was 50km/hr.

Table 3 shows how velocities vary in each transport scenario for different
types of terrains.

Table 3: Speeds assigned to generate catchments for Models W (Walk only), WB (Walk
and Bicycle) and WM (Walk and motorised). All speeds are in kilometer /hour and take
a walking mode of transport unless where otherwise stated

Land and road type Model W Model WB  Model WM

Tree cover 3.5 3.5 3.5

Shrub Cover 4.5 4.5 4.5

Grassland 4 4 4

Cropland 3.5 3.5 3.5

Regularly Flooded 0 0 0

Sparse Vegetation 4.5 4.5 4.5

Bare Areas 5 10 (Bicycling) 5

Built Up Areas 5 10 (Bicycling) 5

Open Water 0 0 0

Primary road 5 5 50 (Motorized)
Secondary road 5 5 30 (Motorized)
County road 5 10 (Bicycling) 25 (Motorized)
Rural road 5 10 (Bicycling) 5
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To generate SCAs for all schools in the region, we used the “accessibility”
module of AccessMod to run an anisotropic travel time computation for
each of three aforementioned travel models. The anisotropic option considers
the slopes derived from the Digital Elevation Model (DEM) (Table 2) and
travelling towards the school (direction of travel) to correct for walking 10 and
bicycling speeds (Ray and Ebener, 2008; Tobler, 1993). Hence, we express
the adjusted walking speed W, as

w, = wy X eexp{73.5\k+0.05\} (1())

where wy is the speed on flat surface on the landcover considered and k is
the slope derived from the elevation.

The adjustment for the walking mode of travel decreases walking veloci-
ties as the slope increases, while increasing the walking speed for a negative
slope, according to the Tobler’s hiking function (Tobler, 1993). Bicycling
velocities are adjusted assuming that the increased speed on negative slopes
does not exceed twice the speed on flat ground (Ray and Ebener, 2008). The
motorized speeds were not adjusted for the slope as vehicles are powered
by an engine. Figure 2 provides three example routes that help to illustrate
how the chosen parametrizations for the different velocities affect travel time.
Using a regular grid with spatial resolution of 20-metres, we estimate that a
student riding a bicycle on Route 3 (blue-low class road), would travel at an
average speed of 10km per hour taking a total of 14 minutes to reach their
school. On Route 2, a student will first walk through the area without a
road at bkm per hour (6 minutes), take a vehicle at the bus stop travelling
at a speed of 50km /hr (2 minutes), taking a total of 8 minutes to reach their
school. Finally, a student taking Route 1 (purple- high road class) would
take 4 minutes using a motorized vehicle at 50 km per hour. The routes
are least cost paths determined by the cost distance algorithm with speed
adjusted as described above.

We used the ’cost allocation” option in AccessMod to compute the cost
allocation grid delineating all SCAs. The cost allocation algorithm is similar
to that used for a Voronoi diagram in Euclidean distance analysis, or to a
location-allocation model in a network analysis (Ouma et al., 2021). The
generated SCAs for the 84 sampled schools were then spatially linked to the
2009 population density maps (Stevens et al., 2015) and 10,000 samples for
the residence residence locations, X, of the children were generated. The
choice of least cost distance and cost allocation algorithms to model travel
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time and SCAs, respectively was appropriate given they account for transport
factors (Table 2) and corresponding speeds (Table 3). This is unlike the use of
straight line distances, Voronoi diagram and location-allocation model that
do not account for these travel factors. See Ouma et al. (2021) and Macharia
et al. (2021b) for further details.

Finally, three geostatistical models under the different travel scenarios
described above were fitted; the mesh used to define the piece-wise linear
approximation of the spatial Gaussian process is shown in Figure S1.12 of
Supplementary material 1. In addition to these models, we also fit two geo-
statistical models that use the school location to model the spatial correlation
in the data but make different use of the covariates: the SL model uses the
value of the covariate at the location of the school; the SCLA model uses the
averaged covariate within SCAs.

3.8. Simulation study
We carry out a simulation study to pursue two objectives:
1. to quantify the inferential benefit of accounting for the uncertainty in
the location of residence;

2. to understand how the mis-specification of the mode of travel may affect
the predictive inferences for prevalence.

To this end, we then proceed through the following iterative steps.

Step 1. Generate a data-set of binary outcomes indicating the malaria status

of children, under the geostatistical model that assumes that children
use “walking” only (Model W) as a mode of travel to school.

Step 2. Fit five statistical models to the simulated data-set from the previous

step: model W (the true model), model WB, model WM, model SL
and model SLCA.

Step 3. Generate prevalence predictions p(z) and exceedance probabilities e(x)
for a 30% prevalence threshold, over a regular grid covering the study
area, for each of the five models.

Step 4. Using the exceedance probabilities e(x) from the previous step, classify
each pixel as being above 30% if e(z) > [ and below 30% if e(z) < I,
where [ is obtained by maximizing the specificity and sensitivity of the
classification.
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Step 5. Repeat Step 1 to Step 4, 1,000 times.

Let p(x) denote the true prevalence. Using a regular grid (7, ...,z}) at 10-
meter resolution, we then summarize the predictive performance using the
following indices.

e Average bias: Y 1_, (p(z}) — p(2}))/q

e Root-mean-square prediction error: [39_ (p(x}) — p(x}))?/q]'/?

e Sensitivity: the average proportion across all simulations of pixels that
are correctly classified as exceeding 30% prevalence based on the clas-
sification in Step 4.

e Specificity: the average proportion across all simulations of pixels that
are correctly classified as non-exceeding 30% prevalence based on the
classification in Step 4.

3.4. Results

Geographic accessibility (travel time in minutes) to the nearest public
day primary school in Western Kenya was highly heterogeneous in 2009.
The combination of walking and motorized transport (Model WM ) provided
the fastest option of reaching the nearest school (ranging 0 to 128 minutes)
(see Figure S1.7 in Supplementary material 1) while walking-only scenario
(Model W) ranged between 0 and 233 minutes (Figure 3). Walking and bicy-
cling combined (Model WB) ranged between 0 and 203 minutes (see Figure
S1.6 in Supplementary material 1). The higher travel times was common in
areas adjacent to the mountains and at county border regions. Overall, the
majority of the school going children had good geographic access to their
nearest primary schools in 2009. Across the eight counties, 68.4%, 74.1%
and 78.3% of all the school going children (2.2 million) in the region in 2009
were within 30 minutes of the nearest primary school for models W, WB and
WM, respectively.

A universal gold standard (threshold ) of travel time/distance to the
nearest primary school does exist due to differences in population distribu-
tion, context, geography, infrastructure, and resources between countries. In
Kenya, The Ministry of Education aims to have a school within 2 km walking
distance of every household which is about 24 minutes based on an average
walking speed of 5 km/hr. The average travel time (distance) in the region
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was 28 minutes (2.33 km ) while 65% of the school-going children were within
24 minutes. The western Kenya average is fairly comparable to Rwanda
(1.7K), higher than Gutemala (1.1km), South Africa (1.1k) and Peru (1.4
km) but lower than Tanzania (5.9km) (Rodriguez-Segura and Kim, 2021).
However, these estimates should be interpreted with caution given differences
in methods, input data and context.

The travel time was used as the basis for generating SCAs for each of the
three likely travel scenarios to a school. The catchment areas were generated
for all the 2170 schools in Western Kenya in 2009 to account for competition
of the neighbouring schools for the sampled schools. A subset comprising
the 84 sampled schools was then retained for the subsequent analysis. The
results of the catchment areas are shown in Figures S1.8 to S1.10 of Supple-
mentary material 1. Each school catchment area covered all areas nearer to
it (based on travel time) than any other school based on the cost allocation
algorithm. This meant that all areas and school going children were covered
by their nearest school. The size and shape of the catchment areas were
variable within and between models. However, neither of the models pro-
vided a systematically smaller or bigger sized catchment area relative to the
other catchments from alternative travel scenarios. Figure 4A shows school
catchment areas generated using the three travel scenarios (Models W, WB
and WM) for a Nasianda Primary School where 108 students were surveyed.
Figure 4B shows generated residential locations, X, for one iteration for each
child sampled from Nasianda Primary school, based on population density
as the intensity of a inhomogenous Poisson process.

From the explanatory analysis, enhanced vegetation index was excluded
from the analysis, since this was found to be highly correlated with both the
precipitation and the temperature. The three remaining covariates showed an
approximately linear relationship with the empirical logit (see Figure S1.11
in Supplementary material 1). Consequently, temperature, precipitation and
night time lights were used as spatial predictors for all the five models con-
sidered (Models SL, SLCA, W, WB and WM) for school going children in
Western Kenya.

All Five models considered provide a similar spatial pattern and identify
the Western region as an area of high malaria prevalence in 2009. The north-
Western region had the highest predicted prevalence (over 50%), while in the
north-east the values range between 30% and 50%. In the Southern region,
we find the lowest values of prevalence, ranging approximately between 10%
and 30%. Only few small areas showed a predicted prevalence below 10%.
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Overall across the models, the highest predicted values of prevalence is 77.5%
according to model W (X sampled within SCAs based on walking scenario)
followed by Models WM and WB with slightly lower values of 75.6% and
75.1%, respectively. The SLCA (school’s location - SCA averaged covari-
ates) model had a maximum predicted prevalence of 72.6% while model SL
(school’s location) had 69.15% (Figure 5).

Based on each of the five models, we also estimated the population of
school-going children living in areas having a prevalence of at least 30% in
2009. The SL and SLCA models would have the smallest proportion of about
42.1 % and 42.6% respectively. On the other hand, the W, WB and WM
models yields similar estimates of 44.3%, 44.6% and 43.5% respectively.

These results suggest that difference between the five models considered
can be found in localized areas of the study region. A close inspection of
Figure 5 confirms this, where we used purple ovals to highlight those areas.
For example, in Busia county, corresponding to the leftmost ring of Figure
5), the SL and SLCA models classified areas in the ring as over 50% while
the other models predicted the prevalence to be between 30% and 50%

In addition to the maps of the predicted pravalence, we also compared
the exceedance probabilities (EPs) that malaria prevalence lies above 30%, as
shown in Figure 6. The differences between the five models are more stark in
these maps, where we highlighted areas that are at least 90% likely to exceed
30% in red. The extents where malaria prevalence was greater than 30%
with over 90% probability was dominant in the north west region. The maps
clearly show that the SL and SLCA models identifies a large contiguous
areas of EPs larger than 90%, whilst the other three models yield a more
heterogeneous pattern in the Northern part of the study region. Unlike the
SL and SLCA models, in the Southern part, a relatively large area is shown
to have an EP larger than 90% based on W, WB and WM. Approximately
23.1 % and 22.6% of the school going children were within the areas where
prevalence was classified as over 30 % with a probability of at least 90%
based on SL and SLCA models respectively. On the other hand, models W,
WB, WM has approximately 19.2 %, 16.7 % and 14.3 %, respectively school
going children with the same margins.

The results of the simulation study are presented in Table 3.3. Except for
WM model which provides the worst performance, the differences between
the other models in terms of the four metrics used, are rather small. These
small differences can be explained by the fact that the catchment areas are
relatively small to the scale parameter ¢, hence school locations can be used
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to approximate the residual spatial correlation structure reasonably well in
this instance.

Table 4: Summaries of the simulation study of the application presented in Section 3; for
more details see Section 3.3.

Model = Bias RMSE Sensitivity Specificity

W 0.002 0.176 0.741 0.757
WB -0.005  0.190 0.716 0.729
WM -0.008  0.257 0.569 0.581

SL -0.001  0.169 0.764 0.756

SLCA -0.001  0.169 0.765 0.756

4. Application 2: Small scale mapping of malaria prevalence in
Western Highlands of Kenya

4.1. Data

In this section, we analyse data from a school-based survey of malaria
prevalence conducted in 2010 in a small area within the region encompassed
by the first application as shown in Figure 1. The full details of the sur-
vey are provided elsewhere (Stevenson et al., 2013). The data consists of 46
sampled primary schools, randomly selected from a census of all public pri-
mary schools in the area. At each school, 11 boys and 11 girls per class from
classes 2 to 6 were selected randomly for a total of 4,852 children. Those
aged 8-14 and over 17 years were 90% and 1.2% of the total children, respec-
tively. Each sampled child provided a finger-prick blood sample that was
used to detect HRP as evidence of recent Plasmodium falciparum infection
using RDT (Paracheck, Orchid Biomedical Systems, India). The compound
of each child sampled at school was located and mapped using a personal
digital assistant (PDA) with GPS receiver (Stevenson et al., 2013) and as
illustrated in Figure 1. Important distinction between the first and the sec-
ond application, is that the latter mapped the compound/households of the
school children, the gold standard, while the former did not.

The set of spatial covariates in the first application listed in Table 1
were used. However, because of the low variation of these across the study
site of this second application, we carry out the analysis without using any
covariates. Factors that affect travel to school are shown in Figure 52.1
(Supplementary material 2).
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4.2. Model specification for [X|

We used the same approaches to estimate travel time and model SCAs as
defined in the first application in terms of factors that affect travel (Table 2)
and corresponding travel speeds (Table 3) for the three apriori defined travel
scenarios (W, WB and WM). Likewise, 10,000 sample residence locations, X,
of the children were generated constrained by the SCAs from the 46 sampled
schools.

Five geostatistical models were then fitted. The first three were based
on sampled residence locations, X using the mesh shown in Figure S2.6
of Supplementary material 2. The other two models were based on school
location (model SL) and household location, the gold standard model denoted
as model HL.

In this application, the HL model, which was not available in the first
application, represents our gold-standard reference which we use to discrim-
inate which model delivers the best predictive performance. Hence, we used
the following indicators to quantify which model yields a predictive surface
for prevalence that follows more closely the HL model.

e Average bias: ;1»:1(}3(@-) —pur(7}))/q

e Root-mean-square prediction error: [Y°1_, (p(}) — pur(x]))?/q]'/?
In the above expressions, ﬁHL(x;) denotes the predicted prevalence a grid
location z} from the HL model.

4.3. Results

Travel time (in minutes) to the nearest primary school and the corre-
sponding SCAs are shown in Figure S2.2 of the Supplementary material 2.
Travel time to the nearest school was high and heterogeneous across the three
models. Almost all the children were within half hour of the nearest primary
school in the three travel scenarios. Specifically, 97.6%, 98.3% and 97.8% of
all school going children in the area (347,013) were within half-hour threshold
for models W, WB and WM, respectively. Those outside the threshold were
adjacent to a river and on the edge of the study area.

All the five geostatistical models provide a similar spatial pattern of
malaria prevalence in 2010 (Figure 7). Overall, the malaria prevalence in
the area is highly variable. The north-western region had the highest pre-
dicted prevalence of over 30% with a contiguous area of over 50%. The rest
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of the areas had prevalence of between 10% and 30% and a few areas in
the southern and eastern border with less than 10% (Figure 7). The gold
standard model (model SL), had a maximum prevalence of 83.2%, the high-
est recorded among the five models in the area. This prevalence was closer
to the maximum values recorded by the models accounting for uncertainty
(75.3%, 77.4%, 76.0% for models W, WB and WM, respectively) relative to
model (SL) estimate of 70.8%.

When we spatially overlaid population distribution maps with the pred-
icated prevalence for each model, there were differences in the proportion
of school-going children living in high malarious areas (at least 30% preva-
lence) in 2010. A third (33.1%) of the school-going children lived in areas
with a prevalence of at least 30% based on model HL. The WB model had the
closest proportion (27%) to model HL while, models SL. W, and WM yields
the lowest proportion of children within similar margins, 24.1%, 24.4% and
23.2%, respectively.

Similarly, we also compared EPs that malaria prevalence lies above 30%.
In Figure 8, we highlight areas (in red) that are at least 90% likely to ex-
ceed 30% which were predominant in the north-west region. All the models
identify a large contiguous area meeting the criterion in north-west region.
However, the contiguous area has smaller geographical extents for model HL
relative to the other 4 models. In addition to the large area, the models HL,
W, WB and WM identify other smaller patches meeting the criteria which
are not identified by the school location model. Approximately 10.3 % of
the school going children resided in areas where prevalence was over 30 %
with a probability of at least 90% based on models HL. and SL. The mod-
els accounting for location uncertainty, W, WB and WB had slightly higher
proportion, 16.7 %, 16.8 %, and 15.8 % of the school going children, within
the same margins, respectively.

Table 5 shows the average root-mean-square and bias metrics (see Section
4.2) which are used to compare how well each of the four considered models
can yield a predictive risk surface for prevalence that more closely follows
most the one generated by the geostatistical model based on the actual resi-
dence locations of the students. The results indicate that, albeit marginally,
the model based on the school locations generates a predictive prevalence
surface that better approximate the predictions generated by the HL model
than the other three models that use school catchment areas. This can be
explained in this case by the fact that the accuracy with which estimated
catchment areas can approximate the actual catchment areas varies greatly
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across the study site. Figure S2.3 to S2.5 in Supplementary material 2 shows
an overlay of the modelled SCAs and the actual household location. Overall,
the models fairly approximated the actual SCAs represented by household
locations. Model W had the highest number of household within modelled
SCAs (74.4%) while model WM had the least (68.8%) as shown in Table 1
of Supplementary material 2. Per modelled SCA, the number of households
within modelled SCA was highly variable ranging from only 22.8 % to 100%
of the households. The performance was especially poor where there were
several schools in close proximity.

Table 5: Average root-mean-square-error (RMSE) and bias as specified in Section 4.2.

Model Average RMSE Average Bias

SL 0.071 0.005
W 0.082 0.007
WB 0.085 0.007
WM 0.082 0.007

5. Discussion

In this paper, we have introduced a geospatial framework for the geo-
statistical analysis of school malaria surveys data with incomplete spatial
information on the residential addresses where disease exposure occurs. The
solution that we have introduced in the paper can be summarized in three
main steps. The first step requires the formulation of a suitable statistical
model for the unobserved residence locations of the children attending school.
This was achieved by generating school catchment areas based on factors that
affect travel to primary schools and sampling possible residential locations
within the catchments. In the second step, we used the proposed statistical
model for the unobserved residence locations to generate samples of resi-
dence locations to average the likelihood function and carry out parameter
estimation. The third step consisted of carrying out prediction for disease
prevalence by plugging-in the parameter estimates obtained in the second
step and generating predictive samples of prevalence at selected prediction
locations. This framework provides a statistically rigorous approach to prop-
agate the uncertainty arising from the missingness of residence locations,
which in standard analyses of school malaria data is reduced to the location
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of the school (Macharia et al., 2018; Runge et al., 2020; Stensgaard et al.,
2011).

One of the main benefits of the proposed modelling framework is it pro-
vides a solution to several other statistical problems that have been covered
in this paper: combining data from multiple surveys, some of which may
have missing information on the residence of sampled individuals; reducing
the bias in the estimation of regression relationships between prevalence and
disease risk factors, induced by the aggregation of spatial information to a
single location. However, as suggested by the results of the applications, the
extent to which those issue can be successfully tackled is largely dependent
on how well the school-catchment-area models allow for reliable inferences
on the residence locations.

In our first case study, whilst areal-level summaries, such as the total
population falling in areas with an exceedance probability over 90% for a 30%
prevalence thresholds, were moderately similar (ranging between 23% and
14%) across the models considered, we found substantial localised differences
in both the predicted prevalence (Figure 5) and the exceedance probabilities
(Figure 6) between models that accounted for location-uncertainty (models
W, WB and WM ) and those that did not, based on school locations (models
SL and SLCA. However small these areas may be, this aspect is especially
important to consider when targeting and prioritizing specific areas with
suitable malaria control activities. Among the models that accounted for
location-uncertainty, the differences were less strong, suggesting that the
assumptions made by different geographical access models may not strongly
affect the inferences on disease prevalence.

In the second application, we assessed how similar are the inference be-
tween geostatistical models that incorporate school-catchment area models
and geostaistical models that use the actual residence locations. The results
suggested that inaccurate school catchment areas can have a material impact
on geostatistical inferences and a simpler model that only uses the school lo-
cations can deliver better predictive performances. Future research should
thus focus on improving the catchment area models which provide a way of
developing more realistic geostatistical models than those simply use school
locations. For example, in the first application, if more accurate information
were available, such as the ward (the smallest administrative unit in Kenya)
or enumeration area in which the students resided, the boundaries of these
administrative areas could be used as an alternative to the modelled school
catchment areas. However, the improvement accrued by exploiting this infor-
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mation will vary according to the size of those administrative areas relative
to the school catchment area.

In both applications, among the three models considered for the school
catchment area, the one assuming “walking only” (i.e. Model W) as a mode of
travel to school is the one more strongly supported by previous studies. It is
in fact more plausible that majority of the children walk to reach their school,
since this mobility pattern has been observed in relation to other service
points (e.g., healthcare providers) in Western Kenya (Salon and Gulyani,
2010; Dixit et al., 2016), as a result of low levels of ownership of motor
vehicles Macharia et al. (2021a). However, more recently, it has also been
observed that the number of motorcycles, locally known also known as “boda
boda”, have been increasing especially in Western Kenya (Macharia et al.,
2021a), with a smaller proportion of children more likely to use the public
transport or private vehicles. For these reasons, more accurate information
on the mode of travel of children could help to significantly improve the
methods presented in this paper, which can be applied to other infectious
diseases that are monitored using school data, as in the case of helminth
and schistosomiasis infections (Hodges et al., 2011; Tchuem Tchuenté et al.,
2012; Soares Magalhaes et al., 2011; Gitonga et al., 2010; Brooker et al., 2009;
Ashton et al., 2015; Mathanga et al., 2015).

The framework developed is not only applicable to school survey data
but also to other data-scenarios where there is missing information on the
location where most of the exposure to the disease is likely to occur. For
example, in some households surveys and routinely collected data, due to
confidentiality reasons, the residence location cannot be made available for
analysis. An example of this is given by the Demographic and Health Survey
(DHS). DHS are nationally representative household surveys that have been
conducted in more than 85 countries since 1984 to collect demographic and
health data (Corsi et al., 2012). However, to reduce disclosure risk in DHS,
a cluster is assigned the coordinates of the center of the sampled enumera-
tion area and further randomly displaced. The framework developed can be
adapted to partially account for this geomasking. This is vital because in low
resource settings, such household surveys are the only source of development
indicators. An important aspect of the proposed framework is that it can
also be used to combine data from multiple sources with varying accuracy
for the information of the residence of the sampled individuals.

As shown in this study, catchment areas models are an integral compo-
nent of disease mapping and are essential in order to yield reliable inferences
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and summaries of uncertainty for the health outcome under investigation
(Macharia et al., 2021b). While the three types of catchment areas we gener-
ated did not yield substantially different results, further research is required
to improve these models. Here, each of the models assumed non overlap-
ping catchments but, in reality, students from the same location can attend
different schools and thus create overlapping catchments. To accommodate
this, the attractiveness factor should not only be a function of distance or
travel time, as in our case, but should account for school capacity, classroom
size, number of teachers, perceived teaching quality, and previous examina-
tions results. In our analysis, every student was assumed to attend their
nearest school. This could be further improved if school attendance data
were available, which would allow us to empirically identify a threshold for
the distance or travel time below which students do in fact go to the nearest
school. Such an approach has been implemented in the construction of health
facility catchment areas by using health seeking behaviour information from
DHS (Alegana et al., 2012).

In addition to the limitations outlined in the previous section, there are
other limitations in the illustrated applications. In our analysis, we excluded
boarding schools, which may lead to the underestimation of the travel time
and thus overestimate the size of SCAs. However, there were only nine
schools that were were purely boarding out of 2170 in Western Kenya in
2009. The access models were parametrized using speeds and modes of trans-
port from other studies (Samimi and Ermagun, 2013; Macharia et al., 2017;
Mehdizadeh et al., 2017; Alegana et al., 2021) since we did not have data for
Western Kenya. Future studies should consider collecting data on mode of
transport, speeds and the utilized school in this region for improved mod-
elling of accessing metrics and SCAs. The chosen travel route to school is
a complex process influenced by socio-economic factors and facilitators of
movement such as roads and obstacles. We assumed that students do not
bypass their nearest school, but a small proportion likely bypass their near-
est school due to poverty, affordability, or parents’ past education experience
among other factors.
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Figure 1: Study areas of the applications of Section 3 and Section 4, both located in
Western Kenya. Solid black (counties) and light grey (sub-counties) lines represent ad-
ministrative units . The map in the lower right corner shows the study area and sampled
households from the application of Section 4.
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Figure 2: A map showing examples of optimal routes taken by students, under different
mode of travel. For a detailed explanation, we refer the reader to the main text.
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Figure 3: Travel time (in minutes) to the nearest public day primary school for all 2170
public primary schools in Western Kenya in 2009 ranging from 0 minutes (light green)
to 233 minutes (red ) Model W. Results of Model WB and Model WM are shown in
Supplementary material 1
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Figure 4: A: Sample of school catchment areas generated from each of transport scenarios;
walking (Model W), walking and bicycling (Model WB) and walking and motorised (Model
WM). The school is shown as a black dot; B sampled locations for a single iteration from
one of the catchment areas (Model WB) overlaid on a population distribution map Stevens
et al. (2015) (green to blue shades). In B, the school is shown as an orange triangle. All
the school catchment areas are shown in Supplementary material 1
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Figure 7: Predicted mean malaria prevalence at 0.3 x 0.3 km spatial resolution ranging
from 0% (blue) to 83.2% (dark red) in 2010 for 5 geostatistical models based on school
location (SL), gold standard model (HL) based on household location and three models
accounting for locations uncertainty (W, WB, WM. Circles show areas with differences.
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Figure 8: Maps of exceedance probability for a 30% prevalence threshold with a 90%
probability on a 0.3 km regular grid for 5 geostatistical models based on school location
(SL), gold standard model (HL) based on household location and three models accounting
for locations uncertainty, models W, WB and WM

Appendix A. Supplementary material 1
Additional results for the first application.

Appendix B. Supplementary material 2

Additional results for the second application.

44



Credit Authors Statement

EG and PMM: Conceptualization, data curation, formal analysis, funding acquisition, investigation,
methodology, software, validation, visualization, writing original draft, review and editing. NR:
software, methodology, writing - review and editing. CWG: Data curation, funding acquisition, writing -
review and editing. RWS: Conceptualization, data curation, funding acquisition, investigation, writing -
review and editing



